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Preface

The idea of synthesizing quantum electrodynamics (QED) and the kinetic
theory of plasmas first occurred to me in the early 1970s [1, 2]. The project
to do so has been carried out bit by bit over the subsequent years. The name
“quantum plasmadynamics” (QPD) is my own jargon [3] for the synthesized
theory.

Both QED and the kinetic theory of plasmas are concerned with the inter-
action between charged particles and the electromagnetic field, but they are
radically different in the way the interaction is described. The kinetic theory
of plasmas is a collective-medium theory: a plasma is not a collection of in-
dependent particles in a given electromagnetic field, but a medium in which
the particles collectively modify the field, and the field modifies the parti-
cles. The charge and current densities associated with the particles are part
of a self-consistent field. Conventionally, the kinetic theory of plasmas is a
classical theory: the motions of particles are treated using classical dynamics.
However, classical theory should be regarded as an approximation to quan-
tum theory. QED is the present-day theory of electrodynamics, and classical
electrodynamics should be regarded as an approximation to it. The strictly
classical development of plasma theory in the western plasma-physics liter-
ature, was not reflected in the Russian literature; the western and Russian
literature developed separately due to both being classified before the mid
1950s, A purely classical treatment was also not followed in the solid-state lit-
erature: in solid state physics nonrelativistic quantum mechanics is combined
with classical electromagnetic theory to treat the collective response of the
degenerate electrons in a metal or semiconductor.

There has been a long tradition in the Russian literature of using a semi-
classical formalism in treating the kinetic theory of plasmas, as described by
Tsytovich [4, 5]. The semi-classical approach is used extensively in my books
[6, 7, 8]. In this semiclassical approach only the notation is quantum mechan-
ical; all the calculations are actually classical. The major advantage of the
semiclassical formalism is that it allows one to introduce the induced effects
(stimulated emission and absorption) at a microscopic level, and to use them
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to impose conservation of energy. This overcomes a major weakness in classical
electrodynamics, which does not automatically conserve energy: the radiation
reaction force is introduced specifically to rectify this weakness, but at the
expense of introducing other well-known difficulties.

QED is a relativistic quantum field theory: the particles (electrons and
positrons) and photons are interpreted as quanta of the fields. Collective ef-
fects are not included in QED, with one important exception: the polarization
of the vacuum is a collective effect due to virtual pairs. The generalization from
QED to QPD may be regarded as a procedure for including real particles in
the QED calculation of the response of the vacuum due to virtual particles.

The formulation of QPD involves four steps. The first is to formulate the
classical kinetic theory in a covariant manner. Of particular importance is the
way that the response of the medium is described. The choice emphasized in
this book is such that the description is both covariant and gauge independent.
The next step involves generalizing QED to allow for the dispersive properties
of an ambient medium. In a quantum field theory, the field to be quantized
is identified by writing down its Lagrangian. In the generalization of QED to
QPD, this requires separating the total system of particles and electromag-
netic field into background and wave subsystems. While this separation itself
is non-trivial, once it is made, the quantization of the wave subsystems is
trivial. The third step involves extending QED to include Feynman diagrams
that describe additional processes that are possible in a medium but not in a
vacuum. The final step is to use QED to calculate the response tensors of the
medium.

The project to write this book has been a long-term one. An initial draft
was written in the mid 1980s, and a more extensive draft in 2003. There are
essentially four parts: covariant treatments of unmagnetized and magnetized
classical plasmas, and the relativistic quantum theory for unmagnetized and
magnetized plasmas. In the 2003 draft, I combined the two classical parts in
one volume and the two quantum parts in a second volume. In the current ver-
sion the unmagnetized parts are contained in this volume, and the magnetized
parts in volume 2.

Over the past several years there has been a rapid expansion in the liter-
ature on quantum plasmas, motivated in part by applications to microelec-
tronics [9, 10, 11], to superstrong magnetic fields in astrophysics [12], and to
laboratory experiments with focused high-power lasers [13]. This relatively
recent literature has developed with essentially no reference to the earlier lit-
erature on either QPD or to that on semiconductor plasmas confined in 1D,
2D and 3D (quantum wells, wires and dots). I hope that this book will help
bridge the gap between the older literature and these newer approaches.

Don Melrose
September 2007
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1

Response 4-tensors

The response of a medium to an electromagnetic perturbation can be disper-
sive in both time and space: the response at time t and position x depends
on the disturbance at earlier times, t′ < t, and other positions, x′ �= x. In
describing such a response it is appropriate to Fourier transform so that both
the disturbance and the response are regarded as functions of frequency, ω,
and wavevector, k. A variety of quantities may be chosen to describe the re-
sponse and the disturbance. In the covariant description developed here, the
response is described by the induced 4-current, Jµ(k), and the disturbance
is described by the 4-potential, Aµ(k), where the argument k denotes the 4-
vector kµ = [ω,k]. Provided that any nonlinearity is weak, one may expand
the response in powers of the disturbance. The linear term defines the linear
response 4-tensor, Πµν(k), and the nonlinear terms define a hierarchy of non-
linear response 4-tensors. The response tensor completely characterizes the
electromagnetic properties of the medium, and various physical requirements
are reflected in mathematical constraints on Πµν(k).

The mathematical tools needed for this description of the response are
introduced in the first three sections of this chapter: the 4-tensor notation used
is defined in §1.1, Maxwell’s equations and their covariant are written down in
§1.2, and Fourier transformations are introduced in §1.3. The response tensors
are defined and their general properties are discussed in §1.4. Alternative
descriptions of the response are summarized in §1.5. The important case of an
isotropic medium is discussed in §1.6. Examples of use of the covariant theory
to describe the response of simple media are given in §1.7.

Natural units, in which one has c = 1, h̄ = 1, are used except where
stated otherwise. An exception in made in this chapter, where c is retained
in introducing 4-vectors and electromagnetic fields. The equations of electro-
magnetism are introduced in SI units.

D.B. Melrose: Response 4-tensors, Lect. Notes Phys. 735, 1–36 (2008)
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2 1 Response 4-tensors

1.1 4-tensor notation

The 4-tensor notation used here has greek indices running over 0, 1, 2, 3 or
t, x, y, z. In modern formulations of 4-tensor theory the time component is
chosen to be real, whereas it is chosen to be imaginary in some older 4-tensor
formalisms. The metric tensor, gµν , is introduced to construct (Lorentz) in-
variants. The metric tensor may be used to raise or lower 4-tensor indices.
Contravariant components are denoted by superscripts, and these are distin-
guished from covariant components, which are denoted by subscripts. The sig-
nature of the metric tensor is determined by the trace of the metric tensor. The
choice made here is a signature of −2, so that the metric tensor, gµν , which
is numerically equal to gµν , is diagonal and has components 1,−1,−1,−1.
Where appropriate latin indices are used to denote the space components
1, 2, 3 or x, y, z.

1.1.1 4-tensor equations

To introduce 4-tensor notation in a formal way, let us define what is meant
by a 4-tensor equation.

A 4-tensor equation involves elements which are either kernel symbols,
or products of kernel symbols, with each symbol having zero, one or more
indices. The indices are written in spaces (one space per index) after the kernel
symbol, and any index is either raised (a superscript), denoting a contravariant
component, or lowered (a subscript), denoting a covariant component. The
indices may have affixes, e.g., primes or numerical or other subscripts, and
two indices are the same only if they have the same affix. In each element of
a 4-tensor equation, an index occurs only either once, when it is called a free
index, or twice, when it is called a dummy index. Each pair of dummy indices
must consist of one raised and one lowered index. The summation convention
is that the sum (from 0 to 3) over each pair of dummy indices is implied. The
number and kind of free indices must be the same in all elements of a tensor
equation.

Each kernel symbol is regarded as describing a tensor. The rank of a tensor
is defined as the number of its free indices; 4-tensors of rank zero are called
invariants and 4-tensors of rank one are called 4-vectors. Similarly the rank
of a tensor equation is equal to the number of the free indices in each of its
elements.

It is the space components of a 4-vector, aµ say, that are equal to the
components of the corresponding 3-vectors: ai, with i = 1, 2, 3 is equal to
the ith component of the corresponding the 3-vector. The covariant compo-
nent, ai, is equal to minus the ith component of the 3-vector. A second rank
tensor can be written in terms of its contravariant components, T µν say, its
covariant components, Tµν , or its mixed components T µ

ν or Tµ
ν . It is the

space component T i
j of the mixed tensor that is equal to the ij-component of

the corresponding 3-tensor. The contravariant component T ij , which is equal
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to the covariant component Tij , is equal to minus the ij-component of the
corresponding 3-tensor.

Three elementary manipulations may be performed on any tensor equa-
tion: (i) raising or lowering a free index, (ii) relabeling indices and (iii) con-
tracting over two indices.

1. A lowered index ν is converted into a raised index µ by using the con-
travariant form gµν of the metric tensor, and a raised index ν is converted
into a lowered index µ by using the covariant form gµν of the metric tensor.
For a 4-vector a, these operations are

aµ = gµνaν , aµ = gµνa
ν . (1.1.1)

2. Any free index may be relabeled, provided the relabeling is made in every
element of the tensor equation. Similarly, any pair of dummy indices may
be relabeled, and the raised and lowered indices may be interchanged. For
example, the tensor equation Jµ = ΠµνAν may be relabeled to Jσ =
ΠστAτ or to Jµ = Πµ

νA
ν , or to Jµ = Πµ

νAν . All these forms are
equivalent.

3. A contraction is performed on any tensor equation of rank two or higher. It
involves converting two free indices into a pair of dummy indices, thereby
reducing the rank of the equation by two. For example, the contraction of
the metric tensor is gµ

µ = gµµ = 4.

1.1.2 Important 4-vectors

The contravariant and covariant components of a 4-vector a consist of its
time component a0 and its space components in the form of a 3-vector a. It
is sometimes convenient to denote the decomposition by writing

aµ = [a0,a], aµ = [a0,−a]. (1.1.2)

Note that the three Cartesian components of the 3-vector a are identified with
the contravariant space components a1, a2, a3 of the 4-vector; the covariant
space components a1, a2, a3 of the 4-vector are equal to minus the Cartesian
components of a.

The basic 4-vector is a space-time point xµ = [ct,x], called an event.
(Ordinary units, with c explicit, are used in introducing these quantities.)
The following 4-vectors appear frequently:

event: xµ = [ct,x], (1.1.3)
4-velocity: uµ = [γ, γβ], (1.1.4)

4-momentum: pµ = [ε/c,p], (1.1.5)
wave 4-vector: kµ = [ω/c,k], (1.1.6)

4-current density: Jµ = [ρc,J ], (1.1.7)
4-potential: Aµ = [φ/c,A]. (1.1.8)
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The 4-velocity is normally defined to be dimensionless and expressed in terms
of the dimensionless velocity β = v/c; it satisfies the identity u2 = 1. The
Lorentz factor is γ = (1 − β2)−1/2, the energy is ε = γmc2 and 3-momentum
p = γmv = mcγβ. Another important 4-vector quantity is the operator

4-gradient: ∂µ = ∂/∂xµ = [∂/∂ct, ∂/∂x]. (1.1.9)

Note that differentiation with respect to the contravariant components leads
to the covariant components of the 4-gradient .

The invariant formed from two 4-vectors a and b is denoted ab:

ab = aµbµ = a0b0 − a · b. (1.1.10)

Similarly, the invariant formed from a single 4-vector a is a2 = (a0)2 − a2.

1.1.3 Lorentz transformations

The 4-tensor character of a physical quantity is defined in terms of its trans-
formation properties under a Lorentz transformation. Let K and K ′ be two
inertial frames. Let an event be described by xµ in K and by xµ′

in K ′. Note
that one leaves the kernel symbol unchanged and modifies the index to indi-
cate the same 4-vector in two different frames; adding a prime to the kernel
symbol would indicate a different 4-vector. The components xµ′

are linearly
related to xµ, and this relation is written

xµ′
= Oµ′

+ Lµ′
ν x

ν . (1.1.11)

The special case Oµ′
= 0 in (1.1.11) corresponds to a Lorentz transformation.

The constant 4-vector Oµ′
relates the origins in space and time in K and

K ′, and for Oµ′ �= 0, the general set of transformations (1.1.11) is referred to
as the Poincaré group of transformations. There are ten generators for this
group, four representing translations and six representing rotations in the 4-
dimensional space-time. The Lorentz transformations form a subgroup of the
Poincaré group involving rotations in the 4-dimensional space-time.

An arbitrary Lorentz transformation involves six parameters. The number
of free parameters corresponds to the number of generators of the group,
and the six generators of Lorentz transformations are separated into three
representing rotations of the coordinate axes, and three boosts . A particular
boost can be represented by a transformation in which the coordinates axes
are parallel, and the relative velocity of K ′ to K is parallel to one of the
coordinate axes. An arbitrary Lorentz transformation may be described in
terms of two rotations and a single boost along a specific axis. First, one
rotates the axes from the initial state so that the rotated 3-axis is along the
direction of the boost, then one makes the boost along this axis, and finally
one rotates the axes to their final state. Thus, formally one needs to consider
a boost only along one axis, chosen here to be the 3-axis.
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A matrix of transformation coefficients, Lµ′
ν , is used to describe a Lorentz

transformation. The matrix convention is that, irrespective of whether the
indices are raised or lowered, the first-written index labels rows and the
second-written index labels columns. In order to preserve all invariants,
the determinant of this matrix must be equal to unity to within a sign. For
proper Lorentz transformations this sign is positive and for improper Lorentz
transformations it is negative. Proper Lorentz transformations form a contin-
uous group, and one has Lµ′

ν = ∂xµ′
/∂xν . Improper Lorentz transformations

involve either reflection of a coordinate axis (parity transformation) or of the
time axis (time-reversal transformation).

For any 4-vector aµ the transformation properties of the contravariant and
covariant components are

aµ′
= Lµ′

µ a
µ, aµ = Lµ

µ′ aµ′
, (1.1.12)

aµ′ = Lµ
µ′ aµ, aµ = Lµ′

µ aµ′ . (1.1.13)

The transformation matrix Lµ
µ′ is the (matrix) inverse of Lµ′

µ. Thus the
transformation matrices satisfy

Lµ
µ′ Lµ′

ν = δµν , Lµ′
µ L

µ
ν′ = δµ

′
ν′ , (1.1.14)

where

δµν =
{

1 for µ = ν,
0 for µ �= ν,

(1.1.15)

is the unit 4-tensor. (The mixed components of the metric tensor, gµ
ν , is also

the unit tensor, but it is conventional to write δµν rather than gµ
ν or gνµ.)

1.1.4 Specific transformation matrices

In the case of a boost in which the axes in K and K ′ are parallel, and K ′ is
moving along the 3-axis of K at velocity v = βc, the explicit forms for the
transformation matrices are

Lµ′
µ(β) =

⎛
⎜⎝

γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ

⎞
⎟⎠ , Lµ

µ′(β) =

⎛
⎜⎝
γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ

⎞
⎟⎠ ,

(1.1.16)
with γ = (1 − β2)−1/2. A boost is analogous to a rotation in that it may
be described by an angle-type variable, χ say. The transformation matrix for
a true rotation involves trigonometric functions of the rotation angle, and
the transformation matrix (1.1.16) for a boost may be written in terms of
hyperbolic functions of χ:

γ = ε/mc2 = coshχ, p/mc = sinhχ, v/c = β = tanhχ. (1.1.17)



6 1 Response 4-tensors

Equation (1.1.16) becomes

Lµ′
µ(tanhχ) =

⎛
⎜⎝

coshχ 0 0 − sinhχ
0 1 0 0
0 0 1 0

− sinhχ 0 0 coshχ

⎞
⎟⎠ , (1.1.18)

for a boost along the 3-axis, with the inverse matrix, Lµ
µ′(tanhχ), numerically

equal to Lµ′
µ(− tanhχ).

For rotation in 3-dimensional space through polar angles θ, φ about the
3-axis, (1.1.18) is replaced by

Lµ′
µ(θ, φ) =

⎛
⎜⎝

1 0 0 0
0 sin θ cosφ sin θ sinφ 0
0 − sin θ sinφ sin θ cosφ 0
0 0 0 cos θ

⎞
⎟⎠ ,

Lµ
µ′(θ, φ) =

⎛
⎜⎝

1 0 0 0
0 sin θ cosφ − sin θ sinφ 0
0 sin θ sinφ sin θ cosφ 0
0 0 0 cos θ

⎞
⎟⎠ . (1.1.19)

More generally, let the axes in K be along the unit vectors x̂, ŷ, ẑ, and the
axes in K ′ be along the unit vectors x̂′, ŷ′, ẑ′. Then Lµ′

µ has the same leading
row and column as in (1.1.19), with the µ′ = i′, µ = i term in the remaining
3×3 submatrix, Li′

i, having components equal to the dot product of the unit
vectors along the i′ axis in K ′ and the i axis in K. Specifically, for i′ = 1′,
i = 1, R1′

1 is equal to x̂′ · x̂.
A 4-tensor equation is said to be in a manifestly covariant form. This

means that the form is obviously unchanged under a Lorentz transformation,
so that the equation manifestly satisfies the requirement of the special theory
of relativity. Under a transformation from frame K to frame K ′, a tensor
equation transforms simply by adding primes to all the free indices.
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1.2 Electromagnetic field

The electromagnetic field can always be described in terms of the electric
field strength E and the magnetic induction B. Maxwell’s equations relate
these fields to each other and to charges and currents, described by the charge
density, ρ, and the current density J . Maxwell’s equation can be written in
covariant form by combining E, B in the Maxwell tensor and ρ, J in the
4-current (1.1.7). In this section Maxwell’s equations are introduced in SI
units and written in a covariant form using these units. Elsewhere in this
book, natural units are used; the relation between natural units, SI units and
gaussian units is discussed in Appendix A.

1.2.1 Maxwell’s equations

In standard vector notation Maxwell’s equations, in SI units, are

curlE = −∂B
∂t
, div B = 0, (1.2.1)

curlB = µ0J +
1
c2
∂E

∂t
, div E =

ρ

ε0
. (1.2.2)

with µ0ε0 = 1/c2. It should be emphasized that (1.2.1) and (1.2.2) are the
general form of Maxwell’s equations, with ρ and J the actual charge and
current densities.

In covariant form, Maxwell’s equations (1.2.1) and (1.2.2) become

∂µF νρ(x) + ∂ρFµν(x) + ∂νF ρµ(x) = 0, (1.2.3)

∂µ F
µν(x) = µ0 J

ν(x), (1.2.4)

where Fµν(x) is the Maxwell tensor, and where the argument x denotes (ct,x).
The Maxwell tensor is related to the Cartesian components of E/c and B by

Fµν(x) = [E/c,B] =

⎛
⎜⎝

0 −E1/c −E2/c −E3/c
E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

⎞
⎟⎠ . (1.2.5)

The Maxwell tensor is antisymmetric,

Fµν(x) = −F νµ(x). (1.2.6)

The first of Maxwell’s equations (1.2.3) is written more concisely in terms of
the dual of the Maxwell tensor. The dual of any second-rank tensor T µν is
defined by

∗T µν = 1
2 ε

µναβ Tαβ , (1.2.7)

where εαβγδ is the permutation symbol
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εαβγδ =

{ 1 for αβγδ an even permutation of 0123,
−1 for αβγδ an odd permutation of 0123,

0 otherwise.
(1.2.8)

The permutation symbol with lowered indices, εαβγδ, is numerically equal to
minus εαβγδ, specifically, ε0123 = −1. (In curve space-time, the permutation
symbol generalizes to the Levi-Civita pseudotensor: with ε0123 = 1 one has
ε0123 = g, where g is the determinant of the metric tensor, g = det [gµν ], with
g = −1 for flat space-time.)

The outer product of the permutation symbol with indices raised and the
permutation symbol with indices lowered appears is §2.2 in evaluating the
determinant of a 4 × 4-matrix. This product is

εµνρσεαβγδ = −4! δ[µα δ
ν
βδ

ρ
γδ

σ]
δ = −4! δµ[αδ

ν
βδ

ρ
γδ

σ
δ], (1.2.9)

where square brackets around indices indicates antisymmetrization over them.
Specifically, one is to average over the 4! permutations of µνρσ with the twelve
even permutations given the plus sign and the twelve odd permutations given
the minus sign. Other properties follow from (1.2.9) by making contractions:

εηαβγεηµνρ = −
(
δαµδ

β
ν δ

γ
ρ + δαν δ

β
ρ δ

γ
µ + δαρ δ

β
µδ

γ
ν − δβµδαν δγρ − δβν δαρ δγµ − δβρ δαµδγν

)
,

εηθαβεηθµν = −2
(
δαµδ

β
ν − δαν δβµ

)
, εηθκαεηθκµ = −6δαµ , (1.2.10)

with εαβγδεαβγδ = −24. It follows that the dual of the dual,

1
2 ερσµν

∗T µν = 1
4 ερσµν ε

µναβ Tαβ = − 1
2

(
Tρσ − Tσρ

)
, (1.2.11)

is minus the antisymmetric part of the original tensor.
The dual of the Maxwell tensor is

∗Fµν(x) = [B,−E/c] =

⎛
⎜⎝

0 −B1 −B2 −B3

B1 0 E3/c −E2/c
B2 −E3/c 0 E1/c
B3 E2/c −E1/c 0

⎞
⎟⎠ . (1.2.12)

Equation (1.2.3) is replaced by

∂µ
∗Fµν(x) = 0. (1.2.13)

1.2.2 Electric and magnetic field 4-vectors

The electric and magnetic vectors have no 4-vector counterparts in general,
but one can define 4-vectors that correspond to the electric and magnetic
vectors in a specific frame. In the specific frame, the component F 0i of the
Maxwell tensor corresponds to the ith component of −E/c, and the compo-
nent ∗F 0i of the dual of the Maxwell tensor corresponds to the ith component
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of −B. Let this specific frame have a 4-velocity ũµ relative to some arbitrary
reference frame. The 4-vectors

Eµ = cFµν ũν , Bµ = ∗Fµν ũν , (1.2.14)

reduce to Eµ = [0,E], Bµ = [0,B] in the frame ũµ = [1,0]. The asymmetry
of the Maxwell tensor implies

Eµũµ = 0, Bµũµ = 0. (1.2.15)

The Maxwell tensor and its dual may be expressed in terms of these 4-vectors:

Fµν = (Eµũν − Eν ũµ)/c+ εµναβ ũαBβ , (1.2.16)
∗Fµν = Bµũν −Bν ũµ − εµναβ ũαEβ/c. (1.2.17)

Using (1.2.16), (1.2.17), Maxwell’s equations (1.2.4) and (1.2.13) become

∂µ[(Eµũν − Eν ũµ)/c+ εµναβ ũαBβ ] = µ0J
ν , (1.2.18)

∂µ(Bµũν −Bν ũµ − εµναβ ũαEβ/c) = 0. (1.2.19)

The second and fourth of Maxwell’s equations in the noncovariant form (1.2.1),
(1.2.2) follow from the components of (1.2.19), (1.2.18) along ũν, respec-
tively, and the first and third of (1.2.1), (1.2.2) follow from the components
of (1.2.19), (1.2.18) orthogonal to ũν , respectively.

The representation of the fields in terms of Eµ, Bµ can be useful when
translating non-covariant equations that apply to a specific medium into a
covariant form. The specific frame is usually the rest frame of the medium.

1.2.3 Invariants of the electromagnetic field

Two independent invariants are constructed from the Maxwell tensor. These
are

Fµν Fµν = −2 (E2/c2 − B2), Fµν ∗Fµν = −4 E · B/c. (1.2.20)

The other invariants that one can construct are functions of these two. For
example, one has ∗Fµν ∗Fµν = −Fµν Fµν . The invariants (1.2.20) allow one to
classify a static electromagnetic field as (a) an electrostatic field for Fµν Fµν <
0, Fµν ∗Fµν = 0, (b) a magnetostatic field for Fµν Fµν > 0, Fµν ∗Fµν = 0,
and (c) an electromagnetic wrench for Fµν ∗Fµν �= 0. The significance of these
definitions is that in case (a) there exists a frame in which the field is a static
electric field, in case (b) there exists a frame in which the field is a static
magnetic field, and in case (c) there exists a frame in which the static electric
and magnetic fields are parallel.
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1.2.4 Continuity equations

On operating on (1.2.4) with ∂ν , the antisymmetry property (1.2.6) implies

∂µ J
µ(x) = 0, (1.2.21)

which is the continuity equation for charge. More generally, the continuity
equation for some quantity with spatial density Q0(x), flux density Q(x) and
which is created at a rate SQ(x) per unit volume and per unit time is

∂µQ
µ(x) = ∂0Q0(x) + div Q(x) = SQ(x). (1.2.22)

An implication of (1.2.21) is that the source term for charge is identically zero,
so that charge is conserved.

Other continuity equations follow directly from Maxwell’s equations. One
of these is the continuity equation for electromagnetic energy

∂µΘ
µν(x) = Jα(x)Fαν(x), Θµν(x) =

1
µ0

(Fµ
α F

αν + 1
4 g

µν Fαβ F
αβ),

(1.2.23)
where Θµν(x) is the symmetric energy-momentum tensor. One identifies the
energy density, W , momentum density, P , energy flux, F , and the stress 3-
tensor, T , for the electromagnetic field in vacuo:

W = ε0E2/2 + B2/2µ0, F = E × B/µ0,

P = ε0E × B, T =W1− ε0EE − BB/µ0, (1.2.24)

where 1 is the unit 3-tensor, and where ε0µ0 = 1/c2 is used.
The relations (1.2.23) apply to the electromagnetic field in vacuo, and they

should not be applied to waves in a medium. The energetics of waves in dis-
persive media involve contributions from the induced motion of the particles,
which must be included to obtain a self-consistent theory, cf. §2.4.

1.2.5 Gauge transformations

Equation (1.2.3) is satisfied identically by writing Fµν in terms of the 4-
potential Aµ:

Fµν(x) = ∂µAν(x) − ∂νAµ(x). (1.2.25)

The choice Aµ(x) is not unique. Any choice A′µ(x) related to Aµ(x) by a
gauge transformation,

A′µ(x) = Aµ(x) + ∂µψ(x), (1.2.26)

is equally acceptable. In (1.2.26), ψ(x) is any arbitrary differentiable function,
and the value of Fµν is unaffected by the choice of ψ(x). An equation, such
as (1.2.25), that maintains its form under an arbitrary gauge transformation,
is said to be manifestly gauge independent.
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The freedom to make gauge transformations allows one to impose a gauge
condition. All relevant gauge conditions are of the form

ĜαA
α(x) = 0, (1.2.27)

where Ĝα is a differential operator in general. Specific gauge conditions include

Lorenz gauge: Ĝ
(Lor)
α = ∂α, (1.2.28)

Coulomb gauge: Ĝ
(C)
α = [0, ∂/∂x], (1.2.29)

temporal gauge: Ĝ
(t)
α = [1,0]. (1.2.30)

These specific gauges are convenient for different purposes.
In general, the gauge condition is not preserved under a Lorentz transfor-

mation. An exception is for the Lorenz gauge, which has the specific property
that its gauge condition (1.2.28) is manifestly covariant. Thus, if a field sat-
isfies the Lorenz gauge condition in one inertial frame it satisfies the Lorenz
gauge condition in all frames. Consequently, the Lorenz gauge is often chosen
in the development of covariant theories. However, the approach adopted here
is to develop the theory, as far as is possible, in a gauge-independent way, that
is, so that it applies for an arbitrary gauge. The Lorenz gauge plays no special
role in the covariant formalism developed here.

The Coulomb gauge is convenient when treating static fields and longitu-
dinal fields. The temporal gauge is convenient for treating wave fields. (The
‘radiation gauge’, which is widely used in QED, applies only to transverse
waves, in which case the conditions for the Lorenz gauge, the Coulomb gauge
and the temporal gauge are satisfied simultaneously.) In treating waves a spe-
cific choice of gauge needs to be made, and the temporal gauge is chosen.
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1.3 Fourier transforms

The most general description of the response of a medium involves a relation
between the response and the disturbance as functions of the frequency, ω,
and the wave vector, k, described collectively as the 4-vector, k = [ω,k]. The
dependence on k is introduced by Fourier transforming in both time and space.
In this section some relevant properties of Fourier transforms are summarized.

Natural units are used hereafter, except where indicated otherwise. One
practical reason is that a conventional Fourier transforms in space and time
involves integrating over dt and d3x, whereas in a covariant theory one should
integrate over d4x = cdt d3x. For c �= 1 this results in the definition of the
Fourier transform differing by a power of c in the covariant formalism com-
pared with a non-covariant formalism. No such distinction needs to me made
in natural units, because one has x0 = ct→ t and k0 = ω/c→ ω for c→ 1.

1.3.1 4-dimensional Fourier transform

The Fourier transform G̃(k) of a function G(x) is defined by

G̃(k) =
∫
d4x eikxG(x), (1.3.1)

with d4x = dx0dx1dx2dx3. The inverse transform is

G(x) =
∫

d4k

(2π)4
e−ikxG̃(k). (1.3.2)

Except in the remainder of this section (and elsewhere where confusion might
otherwise result) the tilde on G̃(k) is omitted.

Reality condition

If G(x) is real then G̃(k) satisfies

G̃∗(k) = G̃(−k), (1.3.3)

where the asterisk denotes complex conjugation. Note that the reality condi-
tion (1.3.3) does not imply that G̃(k) is itself real.

Power theorem

If G1(x) and G2(x) have Fourier transforms G̃1(k) and G̃2(k), respectively,
then one has ∫

d4xG1(x)G2(x) =
∫

d4k

(2π)4
G̃1(k) G̃2(−k). (1.3.4)

For G1(x) = G2(x) the result (1.3.4) is referred to as the power theorem.
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Convolution theorem

The Fourier transform L̃(k) of the product

L(x) = G1(x)G2(x) . . . Gn(x) (1.3.5)

is the convolution of the Fourier transforms:

L̃(k) =
∫
dλ(n) G̃1(k1) G̃2(k2) . . . G̃n(kn), (1.3.6)

where the n-fold convolution integral is

dλ(n) =
d4k1
(2π)4

d4k2
(2π)4

· · · d
4kn

(2π)4
(2π)4δ4(k − k1 − k2 − · · · − kn), (1.3.7)

with δ4(k) = δ(k0)δ(k1)δ(k2)δ(k3), where k0, k1, k2, k3 are the four compo-
nents of the 4-vector kµ. Similarly, the Fourier transform of a function that is
defined as the convolution of other functions,

J(x) =
∫
dx(n) F1(x1)F2(x2) . . . Fn(xn),

dx(n) = d4x1 . . . d
4xn δ

4(x− x1 − · · · − xn), (1.3.8)

is the product of the Fourier transforms:

J̃(k) = F̃1(k)F̃2(k) . . . F̃n(k). (1.3.9)

1.3.2 Truncations and the Dirac δ-functions

The Fourier integral theorem implies that the Fourier transform G̃(k) of a
function G(x) exists only if G(x) is amplitude-integrable. In practice one is
often concerned with idealized functions, such as wave fields, that do not
vanish at infinity, and formally the Fourier transforms of such functions do
not exist. However, the Fourier transform may still be defined as a generalized
function, i.e., as the limit of a sequence of well-defined functions. One way of
defining a sequence of functions each of whose Fourier transform exists is by
replacing G(x) by a truncated function equal to G(x) inside a large space-
time volume TV and zero outside this space-time volume, and allowing TV
to tend to infinity. There are alternative ways of truncating functions. For
example, one form of truncation in time is made by multiplying the function
by exp[−η|t|] and taking the limit η → 0.

One usually assumes implicitly that appropriate truncations have been
performed, and ignores them. One situation where one needs to take account
of the truncation explicitly is when the square of a δ-function arises. The 4-
dimensional Dirac δ-function is defined as the Fourier transform of unity, that
is,
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(2π)4 δ4(k) =
∫
d4x eikx. (1.3.10)

When the truncation is taken into account, in the limit of arbitrarily large
TV , one has

[(2π)4 δ4(k)]2 = TV (2π)4 δ4(k). (1.3.11)

Similar relations apply independently to the temporal and spatial parts:

[2π δ(ω)]2 = T 2π δ(ω), [(2π)3 δ3(k)]2 = V (2π)3 δ3(k). (1.3.12)

1.3.3 Fourier transforms of the step and sign functions

Two other generalized functions are defined as the Fourier transforms of the
step and sign functions of time. The step function H(t) is defined by

H(t) =
{

1 for t > 0,
0 for t < 0.

(1.3.13)

One way of defining the generalized function is to truncate with an exponential
function, that is, to replace unity in (1.3.13) for t > 0 by exp(−ηt) and allow
η > 0 to tend to zero. The temporal Fourier transform is

H̃(ω) = lim
η→0

∫ ∞

0

dt eiωt−ηt =
i

ω + i0
, (1.3.14)

where i0 denotes the limit of iη as η tends to zero from above. The integral
(1.3.14) defines the generalized function i/(ω + i0).

The Fourier transform of the sign function

S(t) = t/|t| (1.3.15)

is identified by truncating with exp[−η|t|], that is, by replacing t by t e−ηt for
t > 0, and by −|t| e−η|t| for t < 0. The resulting generalized function is

S̃(ω) = lim
η→0

[∫ ∞

0

dt eiωt−ηt −
∫ 0

−∞
dt eiωt+ηt

]
= lim

η→0

2iω
ω2 + η2

= 2i℘ 1
ω
,

(1.3.16)
where the generalized function

℘ 1
ω

=
{

1/ω for ω �= 0,
0 for ω = 0,

(1.3.17)

is called the Cauchy principal value function. As this name implies, when
inside an integral over ω, ℘{1/(ω − ω0)} implies that the Cauchy principal
value of the integral is to be taken.
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1.3.4 Plemelj formula

The unit, step and sign functions are not independent, and the relation be-
tween them implies a relation between their Fourier transforms. The identity

H(t) = 1
2 [1 + S(t)], (1.3.18)

when Fourier transformed, implies

1
ω + i0

=℘ 1
ω
− iπ δ(ω). (1.3.19)

Inside an integral, usually in the more general form

1
ω − ω0 + i0

= ℘ 1
ω − ω0

− iπ δ(ω − ω0), (1.3.20)

this Plemelj formula is interpreted as a separation into a nonresonant part,
identified with the principal value part, and a resonant part, identified with the
part involving the δ-function. This separation into nonresonant and resonant
parts is equivalent to one derived by Landau [1] using an argument based on
Laplace transforming. The procedure of giving the frequency ω an infinitesimal
positive imaginary part, i0, and interpreting poles in integrands according to
(1.3.20) is often called the Landau prescription.

1.3.5 Confinement to the forward light cone

The step function H(t) is used to impose the causal condition. Specifically,
a response function f(t) that is causal in the sense that it vanishes for nega-
tive times, satisfies the identity f(t) = f(t)H(t). Hence its Fourier transform
is equal to the convolution of itself with the Fourier transform of the step
function. Thus a causal function satisfies

f̃(ω) =
i

2π

∫ ∞

−∞

dω′

ω′ − ω + i0
f̃(ω′). (1.3.21)

Using the Plemelj formula (1.3.20), this gives

f̃(ω) =
i

π
℘
∫ ∞

−∞

dω′

ω′ − ω f̃(ω
′). (1.3.22)

The integral transformation on the right hand side of (1.3.22) is a Hilbert
transform, and (1.3.22) implies that a causal function is equal to its own
Hilbert transform.

The condition (1.3.22) applies in any specific frame but it is obviously
not in a covariant form. It is not possible to write the causal requirement
(1.3.22) in a manifestly covariant form because it depends explicitly on the
time coordinate.
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The special theory of relativity implies a stronger causal condition: an
event can depend only on other events in its past light cone. An equivalent
requirement is that a causal function be causal in every inertial frame. To
impose this stronger requirement, consider a Lorentz transformation to an-
other frame moving relative to the chosen frame with an arbitrary 4-velocity
u0 = [γ0, γ0β0]. Time in the new frame is t0 = γ0(t − β0 · x). The Lorentz
factor, γ0, is necessarily positive, and hence the causal condition requires
f(t) = f(t)H(t−β0 ·x) for every β0 satisfying β2

0 < 1. The Fourier transform
in space and time of H(t− β0 · x) is

H̃β0
(k) =

∫
d4x eikxH(t− β0 · x) =

i

ω + i0
(2π)3 δ3(k − ωβ0). (1.3.23)

This stronger form of causality is applied to the linear response tensor in
(1.4.17) below.
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1.4 Linear and nonlinear response 4-tensors

A covariant description of the response of a medium is obtained by the follow-
ing steps: use the Fourier transformed form of Maxwell’s equations to express
the field in terms of the 4-potential; separate the 4-current into induced and
extraneous parts; and expand the induced current in powers of the 4-potential.
The linear term in this expansion defines the linear response tensor and the
nonlinear terms define a hierarchy of nonlinear response tensors. (Natural
units are used in this section.)

1.4.1 Induced current

After Fourier transforming (now omitting the tilde on Fourier transformed
quantities), the relation between the Maxwell 4-tensor and the 4-potential,
(1.2.25) gives

Fµν(k) = −i
[
kµAν(k) − kνAµ(k)

]
. (1.4.1)

Maxwell’s equation (1.2.3) is satisfied identically and (1.2.4) reduces to[
k2 gµν − kµkν

]
Aν(k) = −µ0 J

µ(k). (1.4.2)

The current, Jµ(k), is separated into an induced (ind) part that describes the
response of the medium and an extraneous (ext) part that acts as a source
term:

Jµ(k) = Jµ
ind(k) + Jµ

ext(k). (1.4.3)

The separation (1.4.3) is not uniquely defined, and how the separation is to
be made needs to be specified in any specific theory for the response of a
medium.

1.4.2 Weak-turbulence expansion

The weak-turbulence approximation involves assuming that the induced cur-
rent is sufficiently weak that an expansion in terms of the amplitude Aµ(k) of
the electromagnetic field converges rapidly. The weak-turbulence expansion is
written

Jµ
ind(k) = Πµ

ν(k)Aν(k) +
∫
dλ(2)Π(2)µ

νρ(−k, k1, k2)Aν(k1)Aρ(k2)

+
∫
dλ(3)Π(3)µ

νρσ(−k, k1, k2, k3)Aν(k1)Aρ(k2)Aσ(k3) + · · ·

+
∫
dλ(n)Π(n)µ

ν1ν2...νn(−k, k1, k2, . . . , kn)Aν1(k1)Aν2 (k2) . . . Aνn(kn)

+ · · · , (1.4.4)

where the convolution integrals are defined by (1.3.7). This expansion de-
fines the linear response tensor Πµν(k) and a hierarchy of nonlinear response
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tensors, of which only the quadratic response tensor Π(2)µνρ(k0, k1, k2), with
k0 + k1 + k2 = 0, and the cubic response tensor Π(3)µνρσ(k0, k1, k2, k3), with
k0 + k1 + k2 + k3 = 0, are usually considered when discussing specific weak-
turbulence processes.

The linear response tensor plays a central role in the theory of the elec-
trodynamics of a medium. When only the linear response is retained, (1.4.4)
reduces to

Jµ(k) = Πµ
ν(k)Aν(k), (1.4.5)

where the subscript ‘ind’ is usually omitted when no confusion is likely to
result. General properties of the linear response tensor, Πµν(k), are discussed
in the remainder of this section.

1.4.3 Reality condition

The linear response in the form (1.4.5) is the Fourier transform of a relation
of the form

Jµ(x) =
∫
d4x′ Π̂µ

ν(x− x′)Aν(x′), (1.4.6)

where Π̂µν(x−x′) is, in general, an integro-differential tensor operator. Thus
the linear response tensor is the Fourier transform of a real operator, Π̂µν(x),
and hence it satisfies the reality condition

Πµν(k) =
[
Πµν(−k)

]∗
. (1.4.7)

Note that the reality condition does not imply that Πµν(k) is real.

1.4.4 Charge-continuity and gauge-invariance

The charge continuity relation kJ(k) = 0 follows by contracting (1.4.2) with
kµ. It follows that the response tensor satisfies the first of the following
relations:

kµΠ
µν(k) = 0, kνΠ

µν(k) = 0. (1.4.8)

The second of the relations (1.4.8) is imposed to ensure that the response is
independent of the choice of gauge. A gauge transformation is of the form
(1.2.26), and after Fourier transforming, this gives

A′µ(k) = Aµ(k) + i kµ ψ(k). (1.4.9)

The second of the relations (1.4.8) ensures that the induced current is inde-
pendent of the value of the arbitrary function ψ(k).

Specific choices of gauge lead to gauge conditions of the form (1.2.27),
which after Fourier transforming becomes

GαA
α(k) = 0. (1.4.10)
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The three gauge conditions (1.2.28)–(1.2.30) imply

Lorenz gauge: G
(Lor)
α = kα, (1.4.11)

Coulomb gauge: G
(C)
α = [0,k], (1.4.12)

temporal gauge: G
(t)
α = [1,0], (1.4.13)

respectively. An arbitrary Gα specifies an arbitrary gauge, referred to here as
the G-gauge.

1.4.5 Separation into dissipative and nondissipative parts

Another property of the linear response tensor is related to the separation
into hermitian (superscript H) and antihermitian (superscript A) parts:

ΠHµν(k) = 1
2

[
Πµν(k) +Π∗νµ(k)

]
,

ΠAµν(k) = 1
2

[
Πµν(k) −Π∗νµ(k)

]
. (1.4.14)

These two parts describe the time-reversible or reactive part of the response
and the time-irreversible or dissipative part of the response, respectively. This
may be seen by calculating the work done by the induced current. The calcu-
lation involves the following steps: integrate the ν = 0 component of (1.2.23),
that is Jα(x)Fα0(x), over all space and time; use the power theorem (1.3.4)
to express the integral in terms of Fourier transformed quantities; use (1.4.1)
to introduce the 4-potential; and use (1.4.5) to introduce the induced current.
The symmetry properties of the integral imply that only ΠAµν(k) contributes
to the work done. Hence, dissipative, time-irreversible or resistive effects are
included in the antihermitian part, ΠAµν(k). Nondissipative, time-reversible
or reactive effects are included in the hermitian part, ΠHµν(k).

1.4.6 Kramers-Kronig relations

The response of a medium is causal: the disturbance, A, causes the response,
J , and a disturbance at time t = 0 can induce a response only at times t > 0.
This implies that Πµν(k) is the Fourier transform of a quantity that vanishes
at t < 0. Thus Πµν(k) must satisfy the causal requirement (1.3.21), implying

Πµν(ω,k) = i
∫ ∞

−∞

dω′

2π
Πµν(ω′,k)
ω − ω′ + i0

. (1.4.15)

Using the Plemelj formula (1.3.20) and separating into hermitian and anti-
hermitian parts, (1.4.15) implies

ΠAµν(ω,k) = − i
π
℘
∫ ∞

−∞

dω′

ω′ − ω Π
Hµν(ω′,k),

ΠHµν(ω,k) = − i
π
℘
∫ ∞

−∞

dω′

ω′ − ω Π
Aµν(ω′,k), (1.4.16)
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which are the Kramers-Kronig relations.
The more general requirement that the response be causal in the sense of

special relativity requires that one impose the relation (1.3.23). The general-
ization of (1.4.15) to the condition that the response be nonzero only in the
forward light cone is [2, 3]

Πµν(ω,k) = i
∫ ∞

−∞

dω′

2π
Πµν(ω′,k + β0[ω − ω′])

ω − ω′ + i0
, (1.4.17)

which must apply for all vectors β2
0 < 1. One then has

ΠAµν(ω,k) = − i
π
℘
∫ ∞

−∞

dω′

ω′ − ω Π
Hµν(ω′,k + β0[ω − ω′]),

ΠHµν(ω,k) = − i
π
℘
∫ ∞

−∞

dω′

ω′ − ω Π
Aµν(ω′,k + β0[ω − ω′]), (1.4.18)

with β2
0 ≤ 1 arbitrary. The relations (1.4.18) are generalizations of the

Kramers-Kronig relations to include special relativity in the causal condition.

1.4.7 Onsager relations

The Onsager relations follow from the time-reversal invariance properties of
the equations of motion used in the derivation the response tensors. Time re-
versal is the formal operation t→ −t. Under this transformation the equation
of particle motion (Newton’s equation, Hamilton’s equations, Schrödinger’s
equation, Dirac’s equation, and so on) has specific symmetry properties, and
these imply that the response tensor has associated properties.

Time reversal is an improper Lorentz transformation, with transformation
matrix

L(tr)µ
ν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (1.4.19)

Let us denote time-reversed quantities by a bar, so that one has x̄µ = [−t,x].
Under time reversal one has

x̄µ = L(tr)µ
ν x

ν = [−t,x] k̄µ = L(tr)µ
ν k

ν = [−ω,k],

J̄µ = −L(tr)µ
ν J

ν = [ρ,−J ], Āµ = −L(tr)µ
ν A

ν = [φ,−A],

F̄µν = −L(tr)µ
σ L

(tr)ν
τ F

στ = [E,−B]. (1.4.20)

The transformation properties of Jµ(k) and Aµ(k) allow one to deduce how
the linear response tensor must transform under time reversal. One requires

Π̄µν = L(tr)µ
σ L

(tr)ν
τ Π

στ . (1.4.21)
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Under time reversal, the argument k of the response tensor also changes to
k̄. Furthermore, if there is a static field, F0, present, there is an implicit
dependence on the field, and under time reversal F0 is replaced by F̄0.

Under time reversal the non-dissipative part must be an even function,

Π̄Hµν(k̄) |F̄0
= ΠHµν(k) |F0 , (1.4.22)

and the dissipative part must be an odd function,

Π̄Aµν(k̄) |F̄0
= −ΠAµν(k) |F0 . (1.4.23)

Using the reality condition, the relations (1.4.22) and (1.4.23) combine into
the concise form

Π̄µν(−k̄) |F̄0
= Πνµ(k)|F0 , (1.4.24)

which is a covariant generalization of a conventional form of the Onsager
relations.

In the special case where the background field is a magnetostatic field,
(1.4.24) implies

Π00(ω,−k) |−B0 = Π00(ω,k) |B0 , Π0i(ω,−k) |−B0 = −Πi0(ω,k) |B0 ,

Πij(ω,−k) |−B0 = Πji(ω,k) |B0 , (1.4.25)

where the reversal of the sign of any external magnetostatic field is noted
explicitly.

The Onsager relations, together with the other relations, imply that the
response 4-tensor involves at most six independent functions of k. For ex-
ample, for a magnetized medium, in view of (1.4.25), the hermitian part of
the response 3-tensor expressed in the coordinate system in which the B0 is
along the 3-axis and k is in the 1-3 plane has the three diagonal components
and Π13(k) = Π31(k) real, and Π12(k) = −Π21(k) and Π23(k) = −Π32(k)
imaginary. Hence, the most general form for the hermitian part of the response
3-tensors involves only these three diagonal and three pairs of off-diagonal
components. The hermitian part of the response 4-tensor can be constructed
from the 3-tensor using the charge-continuity and gauge-invariance relations
(1.4.8), and the antihermitian part of the response tensor can be constructed
from the hermitian part using the first of the Kramers-Kronig relations
(1.4.18).

1.4.8 Nonlinear response tensors

The higher order terms in (1.4.4) define a hierarchy of nonlinear response
tensors, with the nth order response tensor, Π(n)µ0...µn(k0, . . . , kn) having
n+ 1 indices, µ0 . . . µn, and n + 1 arguments, k0, . . . , kn. In (1.4.4) the first-
written argument, which is written as k0 = −k, is such that k is equal to the
sum of the other arguments, k = k1 + · · ·+ kn. This reflects the procedure by
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which the nonlinear response tensors are defined and constructed. It is directly
appropriate for a physical process called an n-wave coalescence, in which n
waves beat together to form a single wave. If the initial waves have wave 4-
vectors k1, . . . , kn then the final wave has wave 4-vector k = k1 + · · ·+kn. The
nonlinear response tensors also describe various crossed processes, obtained
from such an n-wave coalescence by a crossing symmetry. The symmetry is
manifested by writing k0 = −k, so that one has k0 + · · ·+kn = 0. The various
allowed (n+ 1)-wave processes involve various separations of the n+ 1 waves
into subsets corresponding to the initial and final waves. For example, the
cubic nonlinearity (n = 3) allows coalescence of three waves into one wave, and
it also allows wave-wave scattering, in which there are two waves in the initial
state and two waves in the final state. The convention that waves are described
by positive frequencies implies, for example, that ω1, ω2, ω3 > 0, ω0 < 0
corresponds to a coalescence of three waves into one wave, and ω2, ω3 > 0,
ω0, ω1 < 0 corresponds to a wave-wave scattering, 2 + 3 → 0 + 1. Processes
which are related by a crossing symmetry, are said to correspond to different
“channels” of the interaction.

The nonlinear response tensors satisfy a set of relations analogous to those
satisfied by the linear response tensor, plus some additional ones related to
crossing symmetries. A subtle point concerns dissipative processes. The physi-
cally interesting nonlinear dissipative processes involve the nonlinear response
producing a beat disturbance, with this beat being dissipated through the
dissipative part of the linear response. There are also intrinsically dissipative
parts of the nonlinear responses, but these seem to play no physically impor-
tant role in practice. Hence, in discussing the nonlinear response tensors it
is usually appropriate to ignore their intrinsically nonlinear dissipative parts.
This involves retaining only the principal value parts of any integral in the
evaluation of the response tensor.

Provided that intrinsic nonlinear dissipative processes are neglected, the
nth order (n ≥ 2) response tensor exhibits the crossing symmetry property

Π(n)ν0...νi...νj ...νn (k0, . . . , ki, . . . , kj , . . . , kn) =

Π(n)ν0...νj ...νi...νn(k0, . . . , kj , . . . , ki, . . . , kn), (1.4.26)

where i, j take on any values 0 to n. The symmetry property follows from
the fact that the interaction energy

∫
d4k J(k)A(−k)/(2π)4 for the nth order

nonlinear response is completely symmetric in the n fields A(k0), A(k1), . . .,
A(kn), with k0 = −k.

Other relations satisfied by the linear response tensor are closely analo-
gous to the corresponding relations for the linear response tensor. The reality
condition is

Π(n)ν0...νn(k0, . . . , kn) =
[
Π(n)ν0...νn(−k0, . . . ,−kn)

]∗
. (1.4.27)
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The charge-continuity and gauge-invariance relations are

(ki)νiΠ
(n)ν0...νi...νn(k0, . . . , ki, . . . , kn) = 0, (1.4.28)

for all i = 0, . . ., n.
The causal condition has different implications than for the linear response.

In any particular nth order nonlinear process, the arguments k0, . . ., kn are
separated into a subset that describe fields in the initial state and a subset
that describe fields in the final state. Let ki be in the initial state, so that
the field is a cause rather than an effect. Imposing the causal relation on the
response at ki requires

Π(n)...νi...(. . . , [ωi,ki], . . .)

= i
∫ ∞

−∞

dω′
i

2π
Π(n),...νi(. . . , [ω′

i,ki + β0(ω′
i − ωi)], . . .)

ωi − ω′
i + i0

= − i
π
℘
∫ ∞

−∞
dω′

i

Π(n)...νi...(. . . , [ω′
i,ki + β0(ω′

i − ωi)], . . .)
ω′

i − ωi
, (1.4.29)

where the final form follows by using the Plemelj formula (1.3.20). The integral
over ω′

i is separated into the portion with ω′
i > 0, which corresponds to ki

describing a field in the initial state, and into the portion with ω′
i < 0, which

corresponds to ki describing a field in the final state. Thus the causal relation
implies an integral relation between the different channels for a nonlinear
process, where the channels are related by crossing symmetries.

The covariant form of the Onsager relations is

Π̄(n)ν0...νn(k̄0, . . . , k̄n) |F̄0
= Π(n)ν0...νn(k0, . . . , kn) |F0 , (1.4.30)

which applies only to the nondissipative part of the tensor.
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1.5 Alternative descriptions of the linear response

In this section, various alternative response tensors are written down and the
inter-relations between them are identified. The different choices of response
tensor arise from different, but equivalent, descriptions of the disturbance and
of the response. These apply to the response for ω �= 0. The static response
needs to be treated separately.

1.5.1 Alternative form of Maxwell’s equations

A qualitatively different description of the response is needed when static fields
are included, and such a description is provided in the older theory referred to
here as phenomenological electrodynamics. In this theory, it is conventional
to introduce an alternative form of the second pair of Maxwell’s equations
(1.2.2). This involves introducing two related fields, the electric induction, D,
and the magnetic field strength, H, which include induced parts of ρ and J .
The pair (1.2.2) of Maxwell’s equations is replaced by

div D = ρext, curlH = Jext + ∂D/∂t, (1.5.1)

respectively. These additional field include the polarization, P , and magneti-
zation, M , whose definitions are model dependent. Originally, P and M were
defined as the induced electric and magnetic dipole moments per unit volume,
respectively. These definitions correspond to assuming that the induced charge
and current densities may be written in the forms

ρind = −div P , J ind = ∂P /∂t+ curlM . (1.5.2)

The two additional fields, D and H, are defined by writing

D = ε0E + P , H = B/µ0 − M . (1.5.3)

Equations (1.5.1) may be written in covariant form by defining the tensor
Hµν(x), which is constructed from D and H in the same way as Fµν(x),
cf. (1.2.5), is constructed from E and B, respectively. Equations (1.5.1) are
replaced by

∂µH
µν(x) = Jν

ext(x), (1.5.4)

where Jν
ext(x) is the 4-current (1.1.7) constructed from ρext and Jext.

1.5.2 Response 3-tensors for the static response

In phenomenological electrodynamics, the linear response is described by re-
lations between P , M and E, B, defining four susceptibility tensors. Using
(1.5.3) these relations are rewritten in terms of D, H as functions of E, B.

One form of this description of the response is
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P = ε0χ(e) ·E + χ(em) ·B/µ0, M = χ(m) ·B/µ0 + ε0χ(me) ·E, (1.5.5)

where χ(e) and χ(m) are the electric and magnetic susceptibilities, respec-
tively, and where χ(em) and χ(me) describe the magneto-electric response [4].
Phenomenologically, most media do not exhibit significant magneto-electric
response, and the existence of such responses was not recognized in the early
development of the theory. Ignoring the magneto-electric response, the rela-
tions may be written in the form

D = εE, ε = ε0
[
1 + χ(e)

]
= ε0K, (1.5.6)

B = µH, µ = µ0

[
1 + χ(m)

]
, (1.5.7)

where 1 denotes the unit 3-tensor. The tensor ε and its dimensionless form
K = ε/ε0 are referred to as the permittivity tensor or the dielectric tensor,
respectively, and µ is the magnetic permeability tensor. The susceptibility
tensors, like the dielectric tensor, K, are dimensionless.

1.5.3 Covariant form for the static response

In a covariant version of the description of the static response, P , M are
combined into a second rank 4-polarization tensor or 4-magnetization tensor.
To avoid confusion with Π let us denote it by Mµν(x), which is constructed
from P , −M in the same way as the Maxwell tensor, Fµν , is constructed
from E, B. Similarly, D, H may be combined into a second rank tensor,
Hµν(x) say. One may choose Hµν(x) to reduce to ε0Fµν(x) in vacuo and
to ε0Fµν(x) +Mµν(x) in a medium. We require that the pair of Maxwell’s
equations that involve the charge and current densities have the covariant
form (1.5.4). The alternative covariant form (1.5.4) of Maxwell’s equations
corresponds to including the response in

Hµν(x) = ε0Fµν(x) +Mµν(x), (1.5.8)

with Hµν = [D,H] (Hµν = [Dc,H] in SI units), that is,

Hµν =

⎛
⎜⎝

0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0

⎞
⎟⎠ . (1.5.9)

The 4-magnetization tensor is identified as Mµν = [P ,−M ], (Mµν =
[cP ,−M ] in SI units) that is,

Mµν =

⎛
⎜⎝

0 −P 1 −P 2 −P 3

P 1 0 M3 −M2

P 2 −M3 0 M1

P 3 M2 −M1 0

⎞
⎟⎠ . (1.5.10)
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The 4-magnetization is related to the induced 4-current by

∂µM
µν(x) = −Jν

ind(x). (1.5.11)

The general response (1.5.5) has the covariant form

Mµν = ε0χµν
ρσ F

ρσ. (1.5.12)

The fourth rank susceptibility 4-tensor has the symmetry properties

χµνρσ = −χνµρσ = −χµνσρ, (1.5.13)

which follow from the antisymmetry of Mµν and Fµν .
In the static limit in the rest frame of the medium, the fourth rank sus-

ceptibility 4-tensor, χµνρσ, may be constructed from the components of the
electric, magnetic and magneto-electric susceptibility 3-tensors. For example,
if there is no magneto-electric response, then the nonzero 4-tensor components
are χ0i

0j and χij
mn, and components related to them by the symmetry prop-

erties of the tensor, with these being equal to χ(e)i
j and −χ(m)k

l, respectively,
where ijk and lmn are even permutations of 123,

1.5.4 Generalizations of phenomenological electrodynamics

The responses in phenomenological electrodynamics are clearly defined only
in the case where the response may be described in terms of induced electric
and magnetic dipole moments per unit volume. The polarization, P , and
magnetization, M , are then uniquely defined by (1.5.2). These quantities
remain well defined when dispersion is included: one simply takes the temporal
Fourier transform of (1.5.2). However, when spatial dispersion is introduced,
P and M are not well defined by (1.5.2). The Fourier transform of the current
may be expanded in powers of |k|:

J(ω,k) =
∫
d3x e−ik·x J(ω,x) =

∫
d3xJ(ω,x) [1 − ik · x + · · ·].

The unit term in the expansion of the exponent corresponds to the electric
dipole component of the response, and the term linear in k corresponds to the
sum of the magnetic dipole and electric quadrupole components. The electric
quadrupole term describes optical activity and the magneto-electric response.
The approach used in phenomenological electrodynamics is valid only if the
expansion in powers of |k| converges, and it is useful only if the expansion
converges rapidly so that terms of order |k|2 can be neglected. When the
expansion does not converge rapidly one must allow the response tensors to
depend on k. However, then the Fourier transform of (1.5.2) does not define
P and M uniquely. In fact, one is free to set M = 0 and include all the
response in P .
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The approach adopted in treating the response of a plasma corresponds
to setting M = 0 and identifying P (ω,k) = iJ(ω,k)/ω. The entire response
is then included in P (ω,k). Similarly, both the electric and magnetic distur-
bances are included in E(ω,k). On writing the linear response in the form
P (ω,k) = χ(ω,k)E(ω,k), the entire response is defined by an equivalent sus-
ceptibility tensor, χ(ω,k). The equivalent dielectric tensor, used extensively
in plasma response theory, is identified as K(ω,k) = 1 + χ(ω,k). This form
of the response is related to that used in phenomenological electrodynamics
through an expansion in k: in the limit |k| → 0, χ(ω,k) reduces to the electric
susceptibility tensor, and the terms linear in k are related to the magnetic
susceptibility and the magneto-electric susceptibility.

1.5.5 Alternative form for the linear response

The foregoing theory for the static response may be generalized to an arbi-
trary response simply by allowing for dispersion and spatial dispersion. This
involves simply replacingMµν and Fµν by their Fourier transforms, and hence
generalizing (1.5.12) to [5, 6]

Mµν(k) = ε0χµν
ρσ(k)F ρσ(k). (1.5.14)

The description of the response in the form (1.5.14) contains the same infor-
mation as does (1.4.5), and so is an alternative description of the response of
an arbitrary medium.

The two alternative forms (1.4.5) and (1.5.14) of the response are related
by identifying the induced current as Jν

ind(k) = ikµM
µν(k) and using (1.4.1)

to rewrite Fµν(k) in terms of Aµ(k). One finds

µ0Π
µν(k) = 2kαkβχ

αµβν(k), (1.5.15)

where the properties (1.5.13) are used.
For the purpose of describing the non-static response, (1.5.14) is unnec-

essarily complicated. It is also ill-defined because after Fourier transforming
there is no unique prescription for separating into electric and magnetic ef-
fects. For example, after Fourier transforming (1.5.2) one is free, without loss
of generality, to choose M = 0 and to describe the response entirely in terms
of an equivalent polarization P . Alternatively, one could choose to include
only the longitudinal part of the response in P , by requiring P ∝ k, with the
transverse part of the response included in M . The point is that (1.5.2) does
not uniquely define how one is to separate into P and M for the non-static
response.

One is free to construct χµνρσ(k) in (1.5.15) in terms of Πµν(k) by writing

χµνρσ(k) =
µ0

2k4

[
kµkρΠνσ(k) − kνkρΠµσ(k) − kµkσΠνρ(k) + kνkσΠµρ(k)

]
.

(1.5.16)
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This construction includes an implicit prescription of how the separation into
P and M is made (specifically, M = 0). For other prescriptions for the
separation into P and M other explicit forms of the relation between χµνρσ(k)
and Πµν(k) apply.

1.5.6 Conductivity 4-tensor

Another 4-tensor that may be used to describe an arbitrary response is ob-
tained by writing the relation between the induced 3-current and the electric
field in 4-vector form. This relation is J(ω,k) = σ(ω,k) · E(ω,k), which
defines the conductivity 3-tensor σ(ω,k). In 3-tensor notation this relation
becomes J i(ω,k) = σi

j(ω,k)Ej(ω,k). The 4-tensor counterpart is

Jµ(k) = σµ
ν(k)Eν(k), (1.5.17)

where the component J0(k) is determined by the charge continuity condi-
tions (1.2.21) and with Eµ(k) = Fµν(k)ũν , cf. (1.2.14). With Fµν(k) =
−i [kµAν(k) − kνAµ(k)], the latter condition implies Eµ(k) = i[Aµ(k) kũ −
kµ ũA(k)]. If one chooses the gauge condition ũA(k) = 0 then one has
σµ

ν(k) = −iΠµ
ν(k)/kũ. In an arbitrary gauge, one is free to specify

σµν(k)ũν = 0, and then one has

σµν(k) = − i

kũ

[
Πµν(k) −Πµα(k)ũαũ

ν
]
. (1.5.18)

The description (1.5.17) contains the same information as the description
Jµ(k) = Πµ

ν(k)Aν(k) adopted here.
Note that, as in the 3-vector approach, Eµ(k) includes Bµ(k) in this

formalism. In particular, the Fourier transform of (1.2.19) implies Bµ(k) =
εµνρσkν ũρEσ(k)/kũ, which also implies kB(k) = 0 and ũB(k) = 0.

1.5.7 Response 3-tensors for plasmas

There are several different conventions for describing the response of a plasma
in its rest frame in terms of different response 3-tensors. These arise from dif-
ferent choices for the vectors that describe the disturbance and the response.
The disturbance is described by either the electric field, E(ω,k), or by the
vector potential in the temporal gauge, given by iωA(ω,k) = E(ω,k). The
response is described either by the induced 3-current, J(ω,k), or by an equiv-
alent polarization, P (ω,k), defined by (1.5.2) by setting M = 0. With this
definition, one has −iωP (ω,k) = J(ω,k). The relevant tensors are defined
by writing

J(ω,k) = σ(ω,k) · E(ω,k) = Π(ω,k) · A(ω,k), (1.5.19)

P (ω,k) = ε0χ(ω,k) · E(ω,k), (1.5.20)
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where σ, Π, χ are the equivalent conductivity, polarization and susceptibility
3-tensors, respectively. These are related to each other and to the equivalent
dielectric tensor K(ω,k) by

K(ω,k) = 1 +
iσ(ω,k)
ωε0

= 1 +
Π(ω,k)
ω2ε0

= 1 + χ(ω,k), (1.5.21)

where 1 is the unit 3-tensor.
The relation between these 3-tensors and the 4-tensor Πµν in any spe-

cific reference frame follows by identifying the mixed space-components, Πi
j

of the 4-tensor with the corresponding components of the 3-tensor Π. The
components of the other 3-tensors follow from (1.5.21). Specifically, one has

Ki
j(k) = δij +

Πi
j(k)
ω2ε0

= δij +
iσi

j(k)
ωε0

, (1.5.22)

with the conductivity 3-tensor satisfying (1.5.19), which has the 3-component
form

J i(k) = σi
j(k)Ej(k), Ki

j(k) = δij + χi
j(k). (1.5.23)

1.5.8 Construction of the 4-tensor from the 3-tensor

The 4-tensor Πµν(k) may be constructed from the response 3-tensor, cf.
(1.5.21). A prescription is as follows: use (1.5.21) to identify Π(ω,k) from
whichever form of the 3-tensor is given; identify the ith component of
J(ω,k) = Π(ω,k) · A(ω,k) with J i(k) = Π i

j(k)Aj(k); note that the ij
component of the 3-tensor is numerically equal to the mixed ij component
Πi

j(k), which is numerically equal to −Πij(k); use the charge-continuity and
gauge-invariance conditions (1.4.8) to construct the remaining components,
which are (in ordinary units)

Π00(k) =
c2kikjΠ

ij(k)
ω2

, Πi0(k) = −ckjΠ
ij(k)
ω

, Π0j(k) = −ckiΠ
ij(k)
ω

.

(1.5.24)
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1.6 Isotropic media

The presence of a medium implies the existence of a special frame. In simple
cases this corresponds to the frame in which the medium is at rest. A particular
case is an isotropic medium: a medium can be isotropic in only one inertial
frame, which is the rest frame. For an isotropic medium the most general
response tensor involves at most three response functions, chosen to be the
longitudinal, transverse and rotatory parts.

1.6.1 Covariant description of an isotropic medium

Let ũµ be the 4-velocity of the rest frame of the medium. The most general
form of the response for an isotropic medium can be inferred as follows.

One can always express Πµν(k) as a sum of terms each of which is an in-
variant function times a second rank tensor. The allowable second rank tensors
for an isotropic medium are those that can be constructed from the available
4-vectors, kµ and ũµ, together with gµν and εµνρσ . The allowable second rank
tensors times the associated invariant function must separately satisfy the re-
ality condition (1.4.7), the charge-continuity and gauge-invariance conditions
(1.4.8), and the Onsager relations (1.4.22). In an isotropic medium, only three
independent such tensors can be constructed, and hence at most three invari-
ants are needed to describe the response of an arbitrary isotropic medium.
The most general form may be written

Πµν(k) = ΠL(k)Lµν(k, ũ) +ΠT (k)T µν(k, ũ) +ΠR(k)Rµν(k, ũ), (1.6.1)

where the three tensors on the right hand side define the longitudinal, trans-
verse and rotatory parts, respectively, and ΠL(k), ΠT (k) and ΠR(k) are the
corresponding response functions.

The 3-tensor separation into longitudinal and transverse parts is well
known. A 4-tensor counterpart is identified as follows. First, choose the rest
frame of the medium and the temporal gauge. Make the conventional 3-tensor
separation into longitudinal and transverse parts by writing

Πij(k) = −ΠL(k)
kikj

|k|2 +ΠT (k)
(
gij +

kikj

|k|2

)
. (1.6.2)

The longitudinal and transverse parts are constructed by projecting onto the
longitudinal direction and onto the transverse plane, respectively:

ΠL(k) = −kikj

|k|2 Π
ij(k), ΠT (k) = 1

2

(
gij +

kikj

|k|2

)
Πij(k). (1.6.3)

An alternative starting point for the separation is to choose the Coulomb
gauge. The longitudinal part of the response is then described by the 00-
component of the response 4-tensor. One has
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ΠL(k) = −ω
2Π00(k)
|k|2 , (1.6.4)

which is equivalent to the expression for ΠL(k) in (1.6.3) when (1.5.24) is
used. The separation (1.6.1) of the 4-tensor into these parts, with ΠR(k) �= 0
if the medium is also chiral, requires only that the appropriate 4-tensor be
identified. To be consistent with (1.6.3), the space components of Lµν(k, ũ),
T µν(k, ũ) must reduce to kikj/|k|2, gij +kikj/|k|2 in the rest frame ũ = [1,0].

1.6.2 Construction of Lµν(k, u), T µν(k, u), Rµν(k, u)

The tensors in (1.6.1) are identified through the following argument. The
only second rank 4-tensors available are kµkν , kµũν , ũµkν , ũµũν , gµν and
εµνρσkρũσ. The final one of these satisfies the gauge-invariance condition
(1.4.8), and it satisfies the reality condition if one multiplies it by i. With
the inclusion of the factor i and an appropriate normalization, this becomes
the rotatory tensor, Rµν(k, ũ). By inspection, the combination k2gµν − kµkν

also satisfies the reality, charge-continuity, gauge-invariance and Onsager re-
lations. A third acceptable combination is identified by noting that

Gµν(k, u) = gµν − k
µuν

ku
(1.6.5)

gives zero when contracted with kν . It follows that the tensor

aµν(k, u) = Gµα(k, u)Gα
ν(k, u) = gµν − k

µuν

ku
− k

νuµ

ku
+
k2uµuν

(ku)2
, (1.6.6)

with u = ũ also satisfies the requirements.
The normalization of the longitudinal and transverse tensor is chosen such

that their mixed space components are equal to kikj/|k|2 and δij − kikj/|k|2,
respectively, in the rest frame. The longitudinal tensor is

Lµν(k, u) =
k2

k2 − (ku)2

[
aµν(k, u) −

(
gµν − k

µkν

k2

)]
. (1.6.7)

The longitudinal tensor may also be written as the outer product of a longi-
tudinal 4-vector with itself:

Lµν(k, u) = −Lµ(k, u)Lν(k, u),

Lµ(k, u) =
kαG

αµ(k, u)
[k2 − (ku)2]1/2

=
ku kµ − k2uµ

ku [(ku)2 − k2]1/2
. (1.6.8)

The transverse tensor is

T µν(k, u) =
1

k2 − (ku)2

[
−(ku)2 aµν(k, u) + k2

(
gµν − k

µkν

k2

)]

=
(ku)2

k2
Lµ(k, u)Lν(k, u) + gµν − k

µkν

k2
. (1.6.9)
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The relations (1.6.7) and (1.6.9) imply

aµν(k, u) = Lµν(k, u) + T µν(k, u), (1.6.10)

k2gµν − kµkν = (ku)2Lµν(k, u) + k2T µν(k, u). (1.6.11)

As already noted, the rotatory tensor is

Rµν(k, u) =
iεµνρσkρuσ

[(ku)2 − k2]1/2
= iεµνρσLρ(k)uσ. (1.6.12)

These three tensors are projection-like operators for the longitudinal, trans-
verse and rotatory parts.

The longitudinal and transverse projections reduce to their 3-tensor coun-
terparts in the rest frame, ũ = [1,0]. Specifically, one has Lij(k, ũ) =
−kikj/|k|2, T ij(k, ũ) = gij + kikj/|k|2, Rij(k, ũ) = −iε0ijlkl/|k| in the rest
frame, only the first two of which are included explicitly in (1.6.4). Some-
times a dyadic notation is used to write the 3-tensors. The mixed component,
Li

j(k, ũ), T i
j(k, ũ) become the ij components of the dyadics κκ, 1 − κκ,

respectively, where κ = k/|k| is a unit vector along the wave vector.

1.6.3 Construction of ΠL(k), ΠT (k), ΠR(k)

The invariants ΠL(k), ΠT (k) and ΠR(k) are constructed from Πµν(k) for an
isotropic plasma using the following identities:

Lµσ(k, u)Lσ
ν(k, u) =

k2

(ku)2
Lµν(k, u),

T µσ(k, u)Tσ
ν(k, u) = T µν(k, u),

Rµσ(k, u)Rσ
ν(k, u) = T µν(k, u),

Rµσ(k, u)Tσ
ν(k, u) = T µσ(k, u)Rσ

ν(k, u) = Rµν(k, u), (1.6.13)

together with the orthogonality relations

Lµσ(k, u)Tσ
ν(k, u) = 0, Lµσ(k, u)Rσ

ν(k, u) = 0, (1.6.14)

and the additional identities

Lµ
µ(k, u) =

k2

(ku)2
, T µ

µ(k, u) = 2, Rµ
µ(k, u) = 0. (1.6.15)

It follows that one has

ΠL(k) =
(kũ)4

k4
Lµν(k, ũ)Πµν(k), ΠT (k) = 1

2Tµν(k, ũ)Πµν(k),

ΠR(k) = − 1
2Rµν(k, ũ)Πµν(k). (1.6.16)

The componentΠR(k) is nonzero only for systems that are optically active,
and hence have a specific handedness. A familiar example is a solution of
dextrose, which is a molecule with a right-handed structure.
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1.6.4 Static limit for an isotropic plasma

The static limit is the low-frequency limit ω → 0. For an isotropic plasma, the
electric and magnetic susceptibilities are scalar functions, so that equations
(1.5.5) become

P = ε0χ(e)E, M =
1
µ0
χ(m)B, (1.6.17)

respectively, where the magneto-electric response is assumed to be absent. The
relation (1.5.15) applied to an isotropic medium leads to the identification of
the static electric and magnetic susceptibilities,

χ(e)(0,k) = lim
ω→0

ΠL(k)
ε0ω2

, χ(m)(0,k) = lim
ω→0

µ0Π
T (k)

|k|2 , (1.6.18)

where L and T denote, respectively, the longitudinal and transverse parts of
the response. In a thermal plasma, the functional form of χ(e)(0,k) is used to
define the Debye length, λD,

χ(e)(0,k) =
1

|k|2λ2
D

. (1.6.19)

The magnetic susceptibility of an electron gas is due to intrinsically quantum
mechanical effects (Pauli spin paramagnetism and Landau diamagnetism),
and is zero in classical theory.
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1.7 Response tensors for simple media

The well-known forms for the response tensors for some simple media are
written down in this section and used to construct the corresponding 4-tensors.

1.7.1 Cold unmagnetized plasma

A well-known form for the response functions for a cold unmagnetized plasma
with plasma frequency ω2

p is KL(ω) = KT (ω) = 1− ω2
p/ω

2. This corresponds
to ΠL = ΠT = −ε0ω2

p. The corresponding 4-tensor is thus

Πµν(k) = −ε0ω2
p[Lµν(k, ũ) + T µν(k, ũ)] = −ε0ω2

pa
µν(k, ũ), (1.7.1)

where (1.6.6), (1.6.7), (1.6.9) are used. The response tensor (1.7.1) describes
the response of a cold plasma in an arbitrary frame in which the rest frame
of the plasma is moving with 4-velocity ũ

One may use the covariant form (1.7.1) to write down the response tensor
for a cold plasma which is streaming with 4-velocity u. A reinterpretation of
(1.7.1) implies that this is Πµν(k) = −ε0ω2

p0a
µν(k, u), where ω2

p0 is defined
in terms of the number density, n0 say, in the rest frame of the streaming
particles. The number density is the time component of a 4-vector, and hence
the number density, n, in the frame in which the plasma is streaming is n =
γn0. With ω2

p defined as the plasma frequency in the frame in which the plasma
is streaming with 4-velocity u, one has ω2

p = γω2
p0. With this reinterpretation,

(1.7.1) becomes

Πµν(k) = −
ε0ω

2
p

γ
aµν(k, u) = −

ε0ω
2
p

γ

(
gµν − k

µuν + kνuµ

ku
+
k2uµuν

(ku)2

)
.

(1.7.2)
Due to the streaming motion, the system is not isotropic, and although one
may construct the longitudinal and transverse parts of the response tensor
(1.7.2), these do not describe the full response.

The 3-tensor components of (1.7.2) are

Πij(k) = −
ε0ω

2
p

γ

(
gij − k

ivj + kjvi

ω − k · v +
(ω2 − |k|2)vivj

(ω − k · v)2

)
. (1.7.3)

The conventional 3-tensor form is identified with the mixed tensor components
Πi

j(k). Suppose we write the 3-tensor relation (1.5.22) in dyadic form as
K(ω,k) = 1+Π(ω,k)/ω2ε0. The dielectric tensor corresponding to (1.7.3) is

K(ω,k) = 1−
ω2

p

γω2

(
1 +

kv + vk

ω − k · v +
(|k|2 − ω2)vv

(ω − k · v)2

)
, (1.7.4)

where 1 denotes the unit tensor. The dyadic-type notation used in (1.7.4) is
helpful for exhibiting the signs of the terms; apart from notation, (1.7.3) and
(1.7.4) are identical.
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A simple generalization is to a plasma consisting of several different cold
components streaming relative to each other. Let the ith component have
plasma frequency, ωpi, Lorentz factor γi and 4-velocity uµ

i = γi[1,vi]. On
summing over all the components, the response tensor (1.7.2) gives

Πµν(k) = −
∑

i

ε0ω
2
pi

γi

(
gµν − k

µuν
i + kνuµ

i

kui
+
k2uµ

i u
ν
i

(kui)2

)
. (1.7.5)

1.7.2 Isotropic dielectrics

A second example of a simple medium is an isotropic dielectric whose response
is described in terms of a dielectric constant ε(ω), and a magnetic permeability
µ(ω), cf. ((1.5.7),

D(ω) = ε(ω)E(ω), H(ω) = µ−1(ω)B(ω). (1.7.6)

To use the covariant theory this response needs to be reexpressed in terms of
Πµν(k). The medium is isotropic so it may be written in the form ((1.6.1)
involving ΠL(k) and ΠT (k), with ΠR(k) = 0 in this case. One identifies

ΠL(k) = ω2 [ε(ω) − ε0],

ΠT (k) = ω2[ε(ω) − ε0] + |k|2
(

1
µ0

− 1
µ(ω)

)
. (1.7.7)

To obtain a covariant form, ω and |k| in (1.7.7) need to be rewritten in terms
of invariants. In the rest frame, ũ = [1,0] one has ω = kũ, |k|2 = (kũ)2 − k2.
On rewriting (1.7.7) in terms of these invariants, the full response tensor is
constructed from from its longitudinal and transverse parts, giving

Πµν(k) = (kũ)2
[
ε(kũ) − 1

µ(kũ)

]
aµν(k, ũ) −

(
1
µ0

− 1
µ(kũ)

)
(k2gµν − kµkν).

(1.7.8)
The response tensor in the form (1.7.8) applies in an arbitrary frame.

1.7.3 Isotropic nonrelativistic thermal plasma

In the rest frame of the medium, the longitudinal and transverse parts of
the dielectric tensor are well known for a nonrelativistic thermal plasma, for
example in terms of the longitudinal and transverse parts of the dielectric
tensorKL,T (k) = 1−ε0ΠL,T (k)/ω2. In particular, the contribution of thermal
electrons is identified as

ΠL(k) =
ε0ω

2

|k|2λ2
D

[
1 − φ(ye) + iπ1/2 exp(−y2e)

]
,

ΠT (k) = ε0ω2
p

[
φ(ye) − iπ1/2 exp(−y2e)

]
. (1.7.9)
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In (1.7.9), λD = Ve/ωp is the Debye length and

φ(y) = − y√
π
℘
∫ ∞

−∞

dt e−t2

t− y = 2y e−y2
∫ y

0

dt et
2

(1.7.10)

is a form of the plasma dispersion function with argument

ye = ω/21/2|k|Ve. (1.7.11)

The standard form of the plasma dispersion function is that of Fried and
Conte [7]:

Z(z) = π−1/2

∫ ∞

−∞
dt
e−t2

t− z = −φ(z)
z

+ iπ1/2 e−z2
, (1.7.12)

where the real part of φ(z) is defined by (1.7.10). The function Z(z) satisfies
the differential equation

dZ(z)
dz

= −2
[
1 + zZ(z)

]
, (1.7.13)

which is integrated to give a form equivalent to (1.7.10) in (1.7.12). Expansions
of φ(y) for small and large arguments give

φ(y) =
{
y2 − 4

3y
4 + · · · for |y2| � 1,

1 + (1/2y2) + (3/4y4) + · · · for |y2| � 1.
(1.7.14)

To obtain the covariant form for the response tensor, one expresses ye in
(1.7.9) in terms of invariants:

y2e =
(kũ)2

2[(kũ)2 − k2]V 2
e

. (1.7.15)

The full response 4-tensor is Πµν(k) = ΠL(k)Lµν(k, ũ) + ΠT (k)T µν(k, ũ).
The response tensor for a streaming distribution follows by ũ→ u, where u is
the 4-velocity of the streaming motion; this replacement is made in (1.7.15),
and hence in (1.7.9), as well as in Lµν(k, u), T µν(k, u). The covariant form of
the response tensor does not simplify significantly in this case.
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2

Covariant theory of wave dispersion

The wave equation follows from the Fourier transform of Maxwell’s equations,
with the current separated into an induced part, that describes the response
of the medium, and an extraneous part, that acts as a source term. Gen-
eral solutions of the inhomogeneous wave equation may be written down in
terms of the Green’s function, sometimes also called the photon propagator.
The natural wave modes of the medium correspond to poles in the photon
propagator. In the absence of a medium, the only waves are transverse waves,
with dispersion relation k2 = 0. In the presence of a medium, there can be
a variety of different wave modes. The properties of a natural wave mode in-
clude its dispersion relation, its polarization vector and the ratio of electric
to total energy in the waves. The energetics of waves in a specific wave mode
includes the form of the energy-momentum tensor, and the separation of the
energy density and energy flux in the waves into electric, magnetic and non-
electromagnetic components. The energetics also includes the damping of the
waves.

The covariant form of the wave equation is written down and the photon
propagator is constructed in §2.1. Some relevant results from the theory of ma-
trices are written down in §2.2. The identifications of the dispersion relation,
polarization 4-vector and ratio of electric to total energy for an arbitrary wave
mode are made in §2.3. Dissipative processes are included in §2.4. The theory
is applied to isotropic and weakly anisotropic media in §2.5, and to several
other examples of simple media in §2.6. The effect of a Lorentz transformation
on wave properties is discussed in §2.7.
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2.1 Wave equation and the photon propagator

The Fourier transformed form of the two covariant Maxwell’s equations,
(1.2.3) and (1.2.4), reduces to the wave equation, (1.4.2), for the 4-potential,
plus a subsidiary equation that relates the Maxwell tensor to the 4-potential.
This single equation is identified as the wave equation for the medium. In
this section the wave equation is written down in covariant form and the
corresponding Green’s function or photon propagator is derived from it.

2.1.1 Wave equation

The wave equation for the electromagnetic field in a medium is obtained from
(1.4.2), viz.

[
k2 gµν − kµkν

]
Aν(k) = −µ0 J

µ(k), by separating the 4-current
into induced and extraneous parts, as in (1.4.3), and identifying the induced
current as the linear response of the medium, as in (1.4.5). The change from
a theory for the electromagnetic field in vacuo to a theory for the electromag-
netic field in a medium involves including this induced term on the left hand
side of the equation. The resulting wave equation is

Λµν(k)Aν(k) = −µ0J
µ
ext(k), (2.1.1)

Λµν(k) = k2gµν − kµkν + µ0Π
µν(k), (2.1.2)

where the extraneous current is retained as an arbitrary source term. The
tensor Λµν(k) satisfies all the general properties (charge-continuity and gauge
invariance relations, reality condition, Kramers-Kronig relations, Onsager re-
lations) satisfied by Πµν(k).

The significance of the inclusion of the linear induced current on the left
hand side of the wave equation is that the field Aµ(k) is now the self-consistent
field in the medium: the induced current is regarded as part of the response
to a source, and not as a source term.

2.1.2 Homogeneous wave equation

The homogeneous wave equation follows from the wave equation (2.1.1) by
neglecting source terms. The extraneous current in (2.1.1) is an explicit source
term, and it is omitted. There is an implicit source term on the left hand side of
(2.1.1) from the dissipative part of Πµν(k). The homogeneous wave equation
is obtained from (2.1.1) by omitting both of these source terms:

ΛHµν(k)Aν(k) = 0, (2.1.3)

where superscript H denotes the hermitian part. The properties of waves in
the medium are found by solving the homogeneous wave equation (2.1.3).

The dispersion equation is the condition for a solution of (2.1.3) to exist.
If one regards (2.1.3) as a set of four coupled linear equations for the four
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components of Aµ(k), the condition for a solution to exist is that the determi-
nant of the coefficients vanish. This corresponds to the determinant of Λµν(k)
vanishing. However, this determinant vanishes identically, and this condition
is satisfied trivially. This is because Λµν(k) satisfies the charge-continuity and
gauge-invariance conditions, so that Aµ(k) ∝ kµ is a trivial solution of (2.1.3).

One way of overcoming this difficulty is to choose a specific gauge. For
example, if one chooses the temporal gauge, then, with A0 = 0 by hypothesis,
(2.1.3) may be replaced by ΛHij(k)Aj(k) = 0, and the dispersion equation is
found by setting the determinant of ΛHij(k) to zero. Another choice of gauge
is the Lorenz gauge. Then, with kµA

µ(k) = 0 by hypothesis, one is free to
omit the term −kµkν in Λµν(k), and the determinant of k2gµν + µ0Π

µν(k)
is nonzero. Equivalent dispersion equations result from each of these proce-
dures with the determinants differing only by an overall multiplicative factor
that is gauge dependent. In a gauge-independent theory, one needs to iden-
tify a gauge-independent method for deriving the dispersion equation. Before
discussing this explicitly, it is appropriate to derive the photon propagator,
which has poles at the zero of the dispersion equation.

2.1.3 Photon propagator

It is convenient to solve the inhomogeneous wave equation (2.1.1) by intro-
ducing the Green’s function or photon propagator, Dµν(k). The propagator
is defined such that the solution of (2.1.1) is

Aµ(k) = −Dµ
ν(k)Jν

ext(k). (2.1.4)

Note that the convention adopted for the definition of the propagator involves
including the factor µ0 from (2.1.1) in the propagator.

There is no unique form for Dµν(k). The charge-continuity relation allows
the addition of an arbitrary function times kν to Dµν(k) without affecting the
value of Aµ(k). Also, Aµ(k) is defined only to within a gauge transformation,
and in a gauge-independent theory one may add an arbitrary function times
kµ to Dµν(k), as this only causes a gauge transformation of Aµ(k). Thus the
photon propagator is defined only to within gauge transformations of the form

D
′µν(k) = Dµν(k) + ξµ(k)kν + kµζν(k), (2.1.5)

where ξ(k) and ζ(k) are arbitrary.

2.1.4 Formal construction of the propagator

One could define the Green’s function or photon propagator as a solution of

Λµ
ν(k)Dνρ(k) = µ0g

µρ. (2.1.6)

However, it is convenient to use the charge continuity relation to replace (2.1.6)
by
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Λµ
ν(k)Dνρ(k) = µ0

(
gµρ − kµkρ/k2

)
, (2.1.7)

which defines the propagator Dµν(k).
A practical difficulty in constructing the photon propagator is that Λµν(k)

is singular. As already noted, the charge-continuity and gauge-invariance re-
lations

kµΛ
µν(k) = 0, kνΛ

µν(k) = 0 (2.1.8)
imply that kν is an eigenfunction of the matrix Λµν(k) with zero eigenvalue.
The fact that Λµν(k) has one zero eigenvalue implies that its determinant
vanishes, and hence that it has no inverse.

The conditions (2.1.8) imply not only that the determinant of Λµν(k)
is identically zero, but also that the matrix of cofactors, λµν(k), is of rank
one. Recall that the order of a square matrix is equal to the number of its
rows or columns, and the rank is the highest order of submatrices (found by
deleting rows and columns) that has a nonvanishing determinant. A matrix
of rank one may be written as the outer product of a vector with itself. With
(2.1.8) regarded as an eigenvalue equation, one of its eigenvalues is identically
zero and the corresponding eigenfunction is kµ. The matrix of cofactors is
proportional to the outer product of this eigenvector with itself. Thus, when
(2.1.8) are satisfied, the matrix of cofactors must satisfy

λµν(k) = λ(k) kµkν , (2.1.9)

which defines the invariant λ(k).
A solution of (2.1.7) is found by considering the second order cofactors,

λµανβ(k). (The second order matrix of cofactors is defined for an arbitrary
matrix in (2.2.4) below.) Here the second order matrix of cofactors is a fourth
rank 4-tensor that satisfies

Λµ
ρ(k)λρναβ(k) = λ(k)

[
gµαkνkβ − gµβkνkα

]
, (2.1.10)

where (2.1.9) is assumed. Contracting (2.1.10) with kνkβ leads to an equation
of the form (2.1.8). Comparison of the resulting expression with (2.1.7) leads
to identification of the following form for the propagator:

Dµν(k) = µ0
kαkβ

k4

λµανβ(k)
λ(k)

. (2.1.11)

Having identified (2.1.11) as one specific solution of (2.1.7), the general solu-
tion is given by adding the arbitrary functions included in (2.1.5).

Alternative forms for the propagator are derived by modifying the fore-
going derivation. Suppose one contracts (2.1.10) with arbitrary Gν and G′

β,
and repeats the derivation. Then (2.1.11) is replaced by

Dµν(k) = µ0
GαG

′
β

(Gk)(G′k)
λµανβ(k)
λ(k)

. (2.1.12)

The choice of G determines the gauge of the solution (2.1.4) for A, which
corresponds to the ‘G-gauge’ (1.4.10). Two specific choices of gauge are of
particular interest: the temporal and Lorenz gauges.
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2.1.5 Temporal gauge

The temporal gauge plays an important role in the theory below. In particular,
it is the gauge chosen to normalize the wave amplitude. One may obtain the
propagator directly in the temporal gauge as follows. The temporal gauge
condition is A0(k) = 0, in which case the equation (2.1.6) that defines the
propagator is replaced by an equation that involves only the space indices
and that defines a 3-tensor form of the propagator:

Λi
r(k)Dr

j(k) = µ0 δ
i
j . (2.1.13)

Let the determinant of Λi
j(k) be Λ(t)(k), and let λ(t)i

j(k) be the matrix of
cofactors of Λj

i(k). Then by construction one has

Λi
r(k)λ(t)r

j(k) = λ(t)(k) δij . (2.1.14)

The solution of (2.1.13) is

Di
j(k) = µ0

λ(t)i
j(k)

λ(t)(k)
, Dµ

0(k) = 0 = D0
ν(k), (2.1.15)

which is the desired propagator in 3-tensor form.
The propagator (2.1.15) is equivalent to that obtained from (2.1.12) by

adopting the temporal gaugeGt
α = [1,0]. The derivation from (2.1.12) involves

relating λ(t)(k) to λ(k), and λ(t)i
j(k) to λ0i

0j . The required relations are
derived in §2.2, cf. (2.2.37).

2.1.6 Lorenz gauge

The Lorenz gauge is covariant. By choosing the Lorenz gauge one can simplify
the construction of the propagator, but at the expense of a loss of generality
from the gauge-independent approach.

The gauge condition for the Lorenz gauge is kµA
µ(k) = 0, and one may

use this to replace Λµν(k), as given by (2.1.2), by Λ(Lor)µν(k), defined by

Λ(Lor)µν(k) = k2gµν + µ0Π
µν(k). (2.1.16)

The advantage of this change is that the matrix Λ(Lor)µν(k) is non-singular,
and hence may be inverted immediately to construct the propagator. Let the
determinant of Λ(Lor)µν(k) be λ(Lor)(k), and let its signed cofactors be denoted
λ(Lor)µν(k). The propagator is then given by

Dµν(k) = µ0
λ(Lor)µν(k)
λ(Lor)(k)

. (2.1.17)

The form (2.1.17) of the propagator is covariant but explicitly gauge-dependent.
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The form (2.1.17) is obtained from (2.1.12) by adopting the Lorenz gauge
GLor

α = kα. One needs to use λ(Lor)(k) = k4λ(k), which follows by writing
Λ(Lor)µν(k) = Λµν(k) + kµkν and then evaluating the determinant of the
right hand side explicitly using (2.1.9). The matrix of cofactors follows by
writing Λµ

ρ(k) = Λ(Lor)µ
ρ(k)−kµkρ in (2.1.10), and contracting the resulting

expression with kνkβ . One finds that λ(Lor)µν(k) = kαkβλ
µανβ(k) satisfies

Λ(Lor)µ
ρ(k)λ(Lor)ρν(k) = k4λ(k)(gµν − kµkν/k2). (2.1.18)

In this way, (2.1.17) reproduces (2.1.11).

2.1.7 Photon propagator in vacuo

In the particular case of a vacuum, where Πµν(k) is zero, the dispersion
equation reduces to λ(k) = k4 = 0. The familiar dispersion relation, k2 = 0,
is a double zero of λ(k), corresponding to two degenerate transverse wave
modes. One also finds that λµανβ(k) is zero for k2 = 0, so that (2.1.12) is
indeterminate. Hence, a different procedure is needed to treat this familiar
case. In fact, it is simple to solve (2.1.6) directly for Πµν(k) = 0 to find

Dµν =
µ0

k2
gµν . (2.1.19)

Use of (2.1.5) allows one to identify the following alternative choices for the
photon propagator in vacuo in three gauges [1]. Starting from (2.1.19) and
using (2.1.5) with ξµ(k) = ζµ(k) = −µ0k

µ/2k4 gives

Dµν =
µ0

k2

(
gµν − k

µkν

k2

)
, (2.1.20)

which is the Landau gauge. To obtain the propagator in the Coulomb gauge,
start from (2.1.19) and choose ξµ(k) = ζµ(k) = (µ0/2k2|k|2)[−ω,k] in (2.1.5),
giving

D00 = − µ0

|k|2 , Di0 = 0, Dij =
µ0

ω2 − |k|2

(
gij +

kikj

|k|2

)
. (2.1.21)

Choosing ξµ(k) = ζµ(k) = (µ0/2k2ω2)[−ω,k] gives the propagator in the
temporal gauge:

Dij =
µ0

ω2 − |k|2

(
gij +

kikj

ω2

)
, D00 = 0, Di0 = 0 = D0j . (2.1.22)

The form (2.1.22) for the propagator may be rewritten as a longitudinal part
−µ0/ω

2 along kikj/|k|2 and a transverse part −µ0/(ω2 − |k|2) along −(gij +
kikj/|k|2).

The photon propagator in a medium can also be written in a variety of
different gauges. The specific forms (2.1.15) and (2.1.17) are counterparts of
(2.1.21) and (2.1.19), respectively. More general forms are written down in
§2.5.
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2.2 Evaluation of λ(k) and λµνστ(k)

In the formal development of the theory of wave dispersion one needs to solve
the wave equation to find the dispersion relations and polarization vectors of
the various wave modes that the medium can support. Several results from the
theory of matrices and determinants are used in §2.1, and further properties
are needed in §2.3. It is appropriate to digress from the general development of
the theory to summarize relevant matrix properties. Here explicit expressions
are written down for arbitrary matrices, and then these results are applied to
the specific matrices that are relevant here.

2.2.1 Arbitrary 4 × 4 matrices

Consider an arbitrary second rank tensor, Aµν , regarded as a 4 × 4 matrix.
From it one may construct various Lorentz invariants and other tensors. For
example, by considering contractions of the tensor with itself one may define

A(2)µ
ν = Aµ

αA
α

ν , A(3)µ
ν = Aµ

αA
α

βA
β

ν , A(4)µ
ν = Aµ

αA
α

βA
β

γA
γ

ν .
(2.2.1)

Higher order products lead to tensors that may be re-expressed in terms of
the lowest four. The traces of these matrices define four invariants:

A(1) = Aµ
µ, A(2) = A(2)µ

µ, A(3) = A(3)µ
µ, A(4) = A(4)µ

µ. (2.2.2)

The determinant, det [A], is another invariant, and it may be expressed
in terms of the traces (2.2.2). Similarly, the first-order (signed) cofactors,
aµ

ν , and the second-order signed cofactors, aµα
νβ, are tensors that can be re-

expressed in terms of the matrices (2.2.1) and the traces (2.2.2). The cofactors
are defined to satisfy

Aµ
ρa

ρ
ν = δµν det [A], (2.2.3)

Aµ
ρa

ρσ
αβ = δµαa

σ
β − δµβa

σ
α. (2.2.4)

The matrix definitions of these quantities has the tensorial form

det [A] = − 1
4!
εµνρσεαβγδA

α
µA

β
νA

γ
ρA

δ
σ, (2.2.5)

aµ
ν =

∂det [A]
∂Aν

µ
= − 1

3!
εµθηκεναβγA

α
θA

β
ηA

γ
κ, (2.2.6)

aµα
νβ =

∂aµ
ν

∂Aβ
α

= − 1
2!
εµαθηενβρσA

ρ
θA

σ
η. (2.2.7)

The determinants of the matrix with contravariant components, Aµν , and the
matrix with mixed components, Aµ

ν , differ by a sign, and for formal purposes
it is assumed that “the determinant” means that of the tensor with mixed
components. The second-order cofactors satisfy the antisymmetry properties
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aµα
νβ = −aαµ

νβ = −aµα
βν . (2.2.8)

Explicit expressions for the determinant and cofactors follow by using the
identity (1.2.9), viz.

εµνρσεαβγδ = −4! δ[µα δ
ν
βδ

ρ
γδ

σ]
δ . (2.2.9)

2.2.2 Cayley-Hamilton theorem

The Cayley-Hamilton theorem is that a matrix satisfies its own characteristic
equation. The characteristic equation for Aµ

ν is

det
[
Aµ

ν − x δµν
]

= 0, (2.2.10)

and its solutions for x give the eigenvalues of the matrix. One has

det [A] − aα
α x+ 1

2a
αβ

αβ x
2 −Aα

α x
3 + x4 = 0. (2.2.11)

With the definitions (2.2.1) and (2.2.11), the Cayley-Hamilton theorem implies

det [A]δµν − aα
αA

µ
ν + 1

2 a
αβ

αβA
(2)µ

ν −Aα
αA

(3)µ
ν +A(4)µ

ν = 0. (2.2.12)

Further identities are obtained by taking the trace of (2.2.12), by contracting
(2.2.12) with aν

µ, and by contracting (2.2.12) with aν
θA

θ
µ. The resulting

explicit expressions are

det [A] =
1
24
[
(A(1))4 + 8A(1)A(3) + 3(A(2))2 − 6(A(1))2A(2) − 6A(4)

]
,

(2.2.13)

aµ
ν = δµν

1
6
[
(A(1))3 − 3A(1)A(2) + 2A(3)

]
− 1

2
Aµ

ν

[
(A(1))2 −A(2)

]
+A(1)A(2)µ

ν −A(3)µ
ν , (2.2.14)

aµν
αβ =

1
2
(
δµαδ

ν
β − δναδ

µ
β

)[(
A(1)

)2 −A(2)
]
−A(1)

[
δµαA

ν
β

−δναAµ
β − δµβAν

α + δνβA
µ

α

]
+ δµαA

(2)ν
β − δναA(2)µ

β

−δµβA(2)ν
α + δνβA

(2)µ
α +Aµ

αA
ν

β −Aµ
βA

ν
α. (2.2.15)

Traces of these quantities give

aµ
µ = 1

6

[
(A(1))3 − 3A(1)A(2) + 2A(3)

]
, (2.2.16)

aµα
να = 1

2

[
(A(1))2 −A(2)

]
δµν −A(1)Aµ

ν +A(2)µ
ν , (2.2.17)

aαβ
αβ = (A(1))2 −A(2). (2.2.18)

These results apply to an arbitrary second-rank 4-tensor.
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2.2.3 Traces of Λµ
ν

In applying the foregoing results to the specific tensor Λµν(k), defined by
(2.1.2), it is convenient to introduce the simplifying notation

Λµ
ν(k) = k2δµν − kµkν + tµν(k), tµν(k) = µ0Π

µν(k). (2.2.19)

Then using the definition (2.2.1) for powers of Λµ
ν(k), one finds

Λ(2)µ
ν(k) = k4δµν − k2kµkν + 2k2tµν(k) + t(2)µν(k), (2.2.20)

Λ(3)µ
ν(k) = k6 δµν − k4kµkν + 3 k4tµν(k) + 3 k2t(2)µν(k) + t(3)µν(k).

(2.2.21)

Taking the traces, as defined by (2.2.2), gives

Λ(1)(k) = 3 k2 + t(1)(k), (2.2.22)

Λ(2)(k) = 3 k4 + 2k2 t(1)(k) + t(2)(k), (2.2.23)

Λ(3)(k) = 3 k6 + 3k4 t(1)(k) + 3k2 t(2)(k) + t(3)(k). (2.2.24)

An expression for λ(k) follows from (2.1.9) and (2.2.14):

λ(k) = k4 + k2t(1)(k) + 1
2

{[
t(1)(k)

]2 − t(2)(k)}
+

1
6k2

{[
t(1)(k)

]3 − 3t(1)(k)t(2)(k) + 2t(3)(k)
}
. (2.2.25)

The second order cofactors follow from (2.2.15):

λµναβ = 1
2

(
gµαgνβ − gµβgνα

)[(
t(1)
)2 − t(2)]+ tµαtνβ − tµβtνα

+kµkα
[(
k2 + t(1)

)
gνβ − tνβ

]
− kµkβ

[(
k2 + t(1)

)
gνα − tνα

]
−kνkα

[(
k2 + t(1)

)
gµβ − tµβ

]
+ kνkβ

[(
k2 + t(1)

)
gµα − tµα

]
+gµα

[
− t(1)tνβ + t(2)νβ

]
− gµβ

[
− t(1)tνα + t(2)να

]
−gνα

[
− t(1)tµβ + t(2)µβ

]
+ gνβ

[
− t(1)tµα + t(2)µα

]
, (2.2.26)

where arguments k are omitted for simplicity in writing. The identities (2.2.17)
and (2.2.18) give

λαµ
αν(k) = δµν

1
2

{
2k4 + 2k2t(1)(k) +

[
t(1)(k)

]2 − t(2)(k)}
+kµkν

(
2k2 + t(1)(k)

)
− tµν(k)

[
k2 + t(1)(k)

]
+ t(2)µν(k), (2.2.27)

λαβ
αβ(k) = 6k4 + 4k2t(1)(k) +

[
t(1)(k)

]2 − t(2)(k), (2.2.28)

respectively.
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2.2.4 Dispersion equation in terms of 3-tensor components

The equation λ(k) = 0 is identified as the dispersion equation. For the practi-
cal purpose of solving the dispersion equation to find the dispersion relations
for the different wave modes in the medium, one needs to make a choice of
independent variable. Conventional choices involve the square of the refrac-
tive index, n2 = |k|2/ω2, the square of the phase speed, z2 = ω2/|k|2, or the
invariant k2 = ω2 − |k|2. The explicit form (2.2.25) is not convenient for the
practical purpose of solving for the dispersion relations because it contains
the variable |k|2 both explicitly, through k2, and implicitly through the time-
components in the traces t(n)(k). It is desirable to rewrite (2.2.25) to make
this implicit dependence on |k|2 explicit. (In spatially dispersive media, there
is a further functional dependence of the 3-tensor components, tij(k), on k,
and this is an intrinsic complication that cannot be avoided.)

In a specific frame, let tij(k) = µ0Π
i
j(k) denote the space components

of the response tensor. In this frame scalar quantities of three kinds may be
constructed: the traces of powers of tij , the longitudinal part of powers of tij
(by projecting with Li

j = −kik
j/|k|2), and the determinant of tij . These are

t1 = tss, t2 = trs t
s
r, t3 = trs t

s
t t

t
r,

tL1 = Li
j tij , tL2 = Li

j tis t
s
j , tL3 = Li

j tis t
s
t t

t
j ,

det [t] = 1
6 (t31 − 3t1t2 + 2t3) = tL3 + 1

2 (t21 − t2)tL − t1tL2 . (2.2.29)

Application of the Cayley-Hamilton theorem to tij leads to an explicit expres-
sion for det [t]. One finds

det [t] δij − 1
2 [(t1)2 − t2] tij + t1 tir trj − tir trs t

s
j = 0. (2.2.30)

The trace of this expression, and its contraction with Li
j lead to the two

expressions for det [t] in (2.2.29), respectively.
The traces of powers of the 4-tensor tµν , cf. (2.2.2), may be written in

terms of the scalars (2.2.29):

t(1) = t00 + tss = −n2 tL + t1, t(2) =
(
n2 tL

)2 − 2n2 tL2 + t2,

t(3) = −
(
n2 tL

)3
+ 3n4 tLtL2 − 3n2 tL3 + t3. (2.2.31)

Then (2.2.25) reduces to

λ(k) = k4(ω2 + tL) + k2[−ω2(tL − t1) + tLt1 − tL2 ]
−ω2(tLt1 − tL2 ) + 1

2 (t21 − t2) + det [t], (2.2.32)

where n = |k|/ω is the refractive index. The equivalent dielectric tensor is
the 3-tensor with components Ki

j(k) = δij + tij(k)/ω2, and in terms of these
components (2.2.32) becomes
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λ(k) = ω6
{
n4KL − n2(KLK1 −KL

2 ) + det [K]
}
, (2.2.33)

with KL, KL
2 , K1, K2 defined by analogy with (2.2.29).

To construct the polarization vector in terms of the scalars (2.2.29) one
needs an explicit expression for λ0i

0j in terms of the scalars and tij . From
(2.2.26) and (2.2.31) one finds

λ0i
0j = δij

[
k2(ω2 + tL) + ω2(t1 − tL) + 1

2 (t21 − t2)
]

+kikj (k2 + t1) − tij (ω2 − t1) − kikr t
r
j − kjk

s tis + tir trj . (2.2.34)

In terms of the notation introduced in (2.2.33), (2.2.34) becomes

λ0i
0j = n4κiκj − n2(κiκj K1 + δij K

L − κiκrK
r
j − κjκ

sKi
s)

+ 1
2δ

i
j [(K1)2 −K2] +Ki

sK
s
j −K1K

i
j , (2.2.35)

with κi = ki/|k|.
The results (2.2.32) or (2.2.33) and (2.2.34) or (2.2.35) are convenient for

deriving the wave properties the rest frame of a medium that is not spatially
dispersive. The dispersion equation is then a quadratic equation for k2 (or for
k2 or n2) as a function of ω and κ.

2.2.5 Relation between 3-tensor and 4-tensor formalisms

As the foregoing remarks suggest, for the purpose of detailed calculations it
is often convenient to use the 3-tensor formalism. There is a simple relation
between the 3-tensor formalism and the 4-tensor formalism, in the sense that
the 3-tensor formalism may be used to calculate λ(k) and λi0

j0(k) as follows.
To reduce the 4-tensor formalism to a 3-tensor formalism one chooses

the temporal gauge. The wave equation (2.1.1) reduces to Λi
j(k)Aj(k) =

−µ0J
i
ext(k), and the homogeneous wave equation (2.1.3) is replaced by an

analogous 3-tensor equation. The propagator in the temporal gauge is de-
fined by (2.1.13) and is constructed using (2.1.14). The determinant, λ(t)(k),
and the matrix of cofactors, λ(t)i

j(k), of the 3-tensor Λi
j(k) are defined by

counterparts of (2.2.6) and (2.2.7), specifically,

λ(t)(k) = − 1
3!
ε0rstε0ijl Λ

i
rΛ

j
sΛ

l
t, λ(t)i

j(k) = − 1
2!
ε0istε0jab Λ

a
rΛ

b
s.

(2.2.36)
One finds

λ(t)(k) = ω2λ(k), λ(t)i
j(k) = λ0i

0j(k), (2.2.37)

where (2.1.9) with µ = 0 = ν is used in deriving the first identity.
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2.3 Dispersion relations and polarization 4-vectors

A natural wave mode of a medium is defined by its dispersion relation, which
is a particular solution of the dispersion equation. The polarization vector is
a solution of the homogeneous wave equation when the dispersion relation is
satisfied.

2.3.1 Dispersion equation

The photon propagator (2.1.12) has poles at

λ(k) = 0. (2.3.1)

Equation (2.3.1) is used here in two complementary ways. First, ignoring dis-
sipation, (2.3.1) becomes a real equation which is solved to find the dispersion
relations for the wave modes in the limit of negligible damping. Second, with
the dissipation included, (2.3.1) is a complex equation, and provided that
the damping is weak, it is included by making a perturbation expansion in
which the frequency (or wavevector) is given an imaginary part whose value
is determined by the imaginary part of λ(k).

Suppose one regards the current associated with dissipative effects as a
source term, and leaves it on the right hand side of the wave equation (2.1.1).
Then only the hermitian part ΠHµν(k) of the response tensor is included in
Λµν(k) in (2.1.2). In this case Λµν(k) in (2.1.1) is replaced by ΛHµν(k) and λ(k)
in (2.3.1) is written as λH(k) to denote that the antihermitian partΠAµν(k) is
neglected in evaluating it. The reality condition for Fourier transforms implies
λ(−k) = λ∗(k), and with λH(k) real, this implies λH(k) = λH(−k). To find
a solution of λH(k) = 0, one needs to choose one component of kµ to be the
dependent variable, and to solve for it in terms of the other components of
kµ. One may write an arbitrary solution in the form kµ = kµ

M , when the
label M refers to an arbitrary wave mode, referred to as the mode M . By
definition, one has λH(kM ) = 0. The identity λH(k) = λH(−k) then implies
that there is a second solution, kµ = −kµ

M , so that all solutions appear in
positive and negative frequency pairs. This fact allows one to choose, without
loss of generality, the frequency of all waves to be positive.

For formal purposes it is usually convenient to solve for ω as a function
of k, in which case the dispersion relation is of the form ω = ωM , where the
dependence of ωM (k) on k is omitted except when confusion might occur.
Another familiar form for a dispersion relation is that for the refractive index,
|k|/ω, as a function of ω and the direction κ = k/|k|. This form corresponds
to |k| = ωnM (ω,κ). The requirement that the solutions appear in pairs allows
one to impose the condition

ωM (−k) = −ωM (k), nM (−ω,−κ) = nM (ω,κ). (2.3.2)
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Confusion can arise between the formal transformation k → −k that changes
the sign of the solution for ω, and the transformation k → −k that inter-
changes forward and backward propagating waves. Such confusion is avoided
by formally splitting the mode M into a forward mode, M+, and a backward
mode, M−, and imposing the condition ωM±(−k) = −ωM±(k) separately on
both. Such separation is not made explicitly here.

2.3.2 Inclusion of weak dissipation

Including dissipation involves retainingΠAµν(k) in (2.1.2). This is done in two
complementary ways: by including dissipation as a source term on the right
hand side, and by including dissipation on the left hand side. In the former
case, the function λ(k) is complex. In the latter approach, as discussed in §2.4,
the dissipative term is regarded as equivalent to an extraneous current which
acts as a source term causing the waves to damp (or to grow if the damping
is negative). These two approaches lead to complementary results and both
are pursued here.

The theory of ‘weakly damped’ waves is based on treating the damping as
a perturbation. The perturbative approach involves expanding λ(k) in powers
ofΠAµν(k), retaining only the first order term. To zeroth order one has λ(k) =
λH(k), and (2.3.1) becomes the dispersion equation for undamped waves. The
first order term determines a small imaginary part of Im kµ

M that describes
the damping of the waves, where Im denotes the imaginary part. One finds[

i Imkµ ∂λ(k)
∂kµ

+
µ0

k4
ΠA

ρσ(k)kαkβλ
αρβσ(k)

] ∣∣∣∣
k=kM

= 0, (2.3.3)

where k = kM denotes the dispersion relation in the absence of dissipation.
Equation (2.3.3) is used in the discussion of wave damping in §2.4.

2.3.3 Antihermitian part of the photon propagator

The photon propagator has both hermitian and antihermitian parts in general.
The propagator relates an electromagnetic disturbance to its source, and the
inclusion of dissipation modifies the solution from what it would be in the
absence of dissipation.

In the absence of dissipative part of the response tensor (AAµν(k) → 0), the
causal condition implies that the propagator has an antihermitian part, called
the resonant part in this context. The resonant part is found by replacing ω
in the denominator in (2.1.11) by ω+ i0. Provided that dλ(k)/dω is positive,
this is equivalent to replacing λ(k) by λ(k) + i0. Then (2.1.11) gives

DAµν(k) = −iπ µ0

GαG
′
β

(Gk)(G′k)
λµανβ(k) δ

[
λ(k)

]
. (2.3.4)
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The δ-function gives a nonzero result only at the zeros of λ(k), allowing one to
separate (2.3.4) into contributions from each wave mode. Applying (2.3.4) to
the 4-potential due to a specific 4-current allows one to separate the parts of
the solution that correspond to the radiative fields in each of the wave modes
in the plasma.

When dissipation is included there is an additional contribution to the anti-
hermitian part of the propagator due to the antihermitian part of the response
tensor. From the definition (2.1.4) of the photon propagator, the anithermitian
part of the response tensor leads to an antihermitian part

DAµν(k) = −D∗µα(k)ΠA
αβ(k)Dβν(k). (2.3.5)

2.3.4 Polarization 4-vectors

Given a solution of the dispersion equation, a solution of the homogeneous
wave equation (2.1.3) exists. Let eµM (k) be a solution for waves in the modeM .
The phase, magnitude and gauge of eµM (k) remain arbitrary, and after suitable
choices of these are made, eµM (k) is identified as the polarization 4-vector for
waves in the mode M .

The polarization 4-vector is constructed as follows. When λ(k) vanishes,
at k = kM say, Λµν(kM ) has two eigenvectors with zero eigenvalue. One
of these is kµ and the other is, apart from an undetermined normalization,
eµM (k). Quite generally, when a matrix has a vanishing determinant it has
at least one eigenvector with zero eigenvalue, and the matrix of cofactors is
proportional to the outer product of this eigenvector with itself. If the matrix
of cofactors also vanishes, then the original matrix has two eigenvectors with
zero eigenvalue. The second order matrix of cofactors is then of rank two and
can be formed from outer products of these eigenvectors with themselves. It
follows that for k = kM , λρναβ(k) can be constructed from kµ and eµM (k).
The symmetry properties λµανβ = −λαµνβ = −λµαβν imply

λµανβ(kM ) ∝
[
eµM (k)kν

M − eνM (k)kµ
M

] [
eαM (k)kβ

M − eβM (k)kα
M

]∗
. (2.3.6)

In the arbitrary G-gauge, with eµMGµ = 0 by definition, contracting (2.3.6)
with GαGβ implies

eµM (k)e∗ν
M (k) ∝ GαGβλ

µανβ(kM ). (2.3.7)

One may use (2.3.7) to construct the polarization vector in any gauge by
identifying G with the appropriate gauge condition, cf. (1.4.10).

The overall phase of eµM (k) remains arbitrary. The relative phases of the
different components of eµM (k) are fixed by the Onsager relations and the
gauge condition.



2.3 Dispersion relations and polarization 4-vectors 51

2.3.5 Normalization of polarization 4-vectors

A specific choice of gauge must be made before the normalization of eµM (k)
can be specified. Any choice of gauge is possible, but a problem arises when
considering the normalization of the polarization. It is desirable to nor-
malize to unity, or to some other constant, but one may do this only if
eµM (k)e∗Mµ(k) has a well determined sign. For example, suppose that one
chooses the Lorenz gauge for longitudinal waves. Then the sign of eµL(k)e∗Lµ(k)
for eµL(k) ∝ Lµ(k, ũ) ∝ kũ kµ − k2ũµ is determined by the sign of k2, and be-
cause this is opposite for superluminal (ω > |k|) and subluminal (ω < |k|)
waves, one cannot normalize both to the same value. This difficulty can be
avoided in general only by choosing the temporal gauge (e0M (k) = 0). In this
particular gauge one has eµM (k)e∗Mµ(k) = −|eM (k)|2, which is necessarily neg-
ative. Hence, in the temporal gauge one is free to specify the normalization
to be

eµM (k)e∗Mµ(k) = −1 (2.3.8)

for all waves.
With the choice of the temporal gauge and the normalization (2.3.8), the

constant of proportionality in (2.3.7) is determined:

λi0
j0(kM ) = −λ0s

0s(kM ) eiM (k)e∗Mj . (2.3.9)

The full tensor has the form

λµναβ(kM ) = −λ
0σ

0σ(kM )
ω2

M (k)
[
eµM (k)kν

M − eνM (k)kµ
M

][
eαM (k)kβ

M − eβM (k)kα
M

]∗
.

(2.3.10)
The relations (2.3.9) or (2.3.10) are used to construct the polarization vector in
the temporal gauge. For example, on calculating λi0

j0(kM ) for i = 1–3 and for
any j, the polarization 3-vector eiM (k) is identified by normalizing these three
components to unity, and the polarization 4-vector in the temporal gauge is
eµM (k) = [0, eM (k)].

2.3.6 Ratio of electric to total energy

Besides the dispersion relation and the polarization vector, there is one other
quantity that characterizes the (time-reversible) properties of a wave mode
M . This is the quantity

RM (k) =
λ0σ

0σ(k)
ω∂λ(k)/∂ω

∣∣∣∣
k=kM

, (2.3.11)

which is interpreted below as the ratio of electric to total energy in the waves.
The total energy in the waves consists of electric energy, magnetic energy
and kinetic energy in induced particle motions. In simple physical models for
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waves one can use the model to identify the energy associated with induced
particle motions. However, even then it is not obvious what part of this is to
be ascribed to the waves and what part is to be ascribed to the background
medium. A formal way of identifying the total energy in waves is to calculate
the work done by a source in exciting the waves and to identify this work with
the change in the energy in the waves. It is shown in §2.4 that this procedure
leads to (2.3.11).

The quantity RM (k) is of significance in connection with the emission and
absorption of waves due to resonant processes. To see this, note first that any
extraneous current couples to the waves only through the term −Jext · E,
which is the source term for the electromagnetic energy density, cf. (1.2.23)
with ν = 0. For example, when the extraneous current is due to a particle,
Jext is identified as the current density associated with the particle, and the
radiation by the particle is calculated from −Jext ·E, with E identified as the
electric field due to this current, and this electric field includes components in
each of the natural modes of the medium. For emission of waves in the mode
M , only the part of E in the mode M is retained. The work done is then pro-
portional to the electric energy in the waves. However, the energy transferred
to the waves must include the magnetic and kinetic contributions to the wave
energy, and not just the electric energy. As a consequence, the ratio RM (k) of
the electric to total energy appears naturally in any description of resonant
wave-particle interactions. (In contrast, inter-particle collisions can affect only
the kinetic energy component in the waves, and emission or absorption due
to collisions involves the ratio of the kinetic to total energy in the waves.)

2.3.7 Alternative forms for RM (k)

Although the form (2.3.11) is appropriate for formal purposes, it is not conve-
nient for the purpose of calculatingRM (k). There are several useful alternative
expressions for RM (k). One alternative follows by starting from (2.1.10) and
performing a contraction to obtain

Λµ
ρ(k)λρσ

µβ(k) = −3 kσkβλ(k), (2.3.12)

where, implicitly, only the hermitian part is retained. Differentiating with
respect to ω and setting λ(k) = 0 gives[{

∂

∂ω
Λµ

ρ(k)
}
λρσ

µβ(k)
] ∣∣∣

λ(k)=0
= −

[
kσkβ

∂

∂ω
λ(k)

] ∣∣∣∣
λ(k)=0

. (2.3.13)

For waves in the mode M , use of (2.3.6) implies that (2.3.11) reduces to

[RM (k)]−1 = −
[ 1
ω

∂

∂ω
ΛM (k

] ∣∣∣
ω=ωM

, ΛM (k) = e∗Mµ(k)eMν(k)ΛHµν(k).

(2.3.14)
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A second alternative follows by using the explicit expression (2.1.2) for Λµν(k),
together with the normalization and gauge condition (2.3.8) for eµM . This gives

[RM (k)]−1 =
[
2 − 1

ε0ω

∂

∂ω
ΠM (k)

] ∣∣∣
ω=ωM

, ΠM (k) = e∗MµeMνΠ
µν(k),

(2.3.15)
where it is implicit that only the hermitian part is retained. A third alternative
form involves the refractive index |k|/ω. This involves choosing |k| as the
dependent variable, so that the dispersion relation is written

|k| = ωnM (ω,κ), κ = k/|k|. (2.3.16)

Contracting the wave equation (2.1.3) with e∗MµeMν in the temporal gauge
implies

ω2
{
n2

M (ω,κ)
[
1 − |κ · eM |2

]
− 1
}

+ µ0ΠM (kM ) = 0. (2.3.17)

Provided that the medium is not spatially dispersive, (2.3.14) implies

[RM (k)]−1 = 2[1 − |κ · eM |2]nM (ω,κ)
∂

∂ω
[ωnM (ω,κ)]. (2.3.18)

The form (2.3.18) is particularly convenient for transverse waves (κ ·e = 0) in
an isotropic plasma, where n(ω) is independent of κ, and for waves in media
which are not spatially dispersive, such as a cold plasma or an anisotropic
crystal.
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2.4 Wave damping and wave energetics

The theory in §2.3 is for undamped waves. The inclusion of the dissipative
part of the linear response implies damping of the waves. Damping is treated
in two complementary ways in this section, and this allows one to identify
the total wave energy, WM (k). Before discussing damping, it is necessary to
define the wave amplitude and to discuss some aspects of wave energetics.

2.4.1 Wave amplitude and wave energy

The wave amplitude is frame and gauge dependent. In a given frame the
amplitude, aM (k), for waves in the mode M , is defined by writing the 4-
potential in the form

Aµ
M (x) = V

∫
d4k

(2π)4
aM (k) eµM (k) e−ikx 2π δ[ω − ωM (k)], (2.4.1)

where ωM (−k) = −ωM (k) includes the negative frequency solution of the
dispersion relation. A power of the normalization volume, V , is included in the
definition (2.4.1) of the amplitude aM (k) so that it has the same dimensions
as Aµ

M (x). The Fourier transform of (2.4.1) gives

Aµ
M (k) = V aM (k)eµM (k) 2π δ[ω − ωM (k)], (2.4.2)

where the negative frequency solution is included explicitly. We choose the
temporal gauge, such that eµM (k) satisfies (2.3.8), and then (2.4.2) defines the
amplitude aM (k).

The electric energy density in waves is evaluated by averaging the energy
density 1

2 ε0|E(x)|2 over all time and space. For this purpose it is important
to truncate the integrals to a finite TV , which is then allowed to approach
infinity. In the temporal gauge, one has

1
TV

∫
d4x 1

2 ε0|E(x)|2 =
1
TV

∫
d4k

(2π)4
1
2 ε0|ωA(k)|2. (2.4.3)

The average electric energy density in waves in the mode M is therefore

V

T

∫
d4k

(2π)4
1
2 ε0|ωAM (k)|2 = V

∫
d3k

(2π)3
ε0|ωMaM (k)|2, (2.4.4)

where the positive and negative frequency solutions in (2.4.2) contribute
equally, and where the square of the δ-functions is rewritten using [2π δ(ω −
ωM )]2 = T 2π δ(ω−ωM ), cf. (1.3.11). The integrand on the right side of (2.4.4)
is identified as the electric energy density in waves in the modeM in the range
V d3k/(2π)3.
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2.4.2 Electromagnetic contributions to the wave energy

The energy in the waves includes electric energy, magnetic energy and energy
in perturbed particle motions associated with the wave. Similarly, the energy
flux includes an electromagnetic contribution, given by the Poynting flux,
and an energy flux associated with perturbed particle motions. It is straight-
forward to calculate these electromagnetic contributions by analogy with the
foregoing calculation of the electric energy. The electric and magnetic energies
are in the ratio

ε0|E|2
2

:
|B|2
2µ0

= 1 : n2
M (1 − |κ · eM |2), (2.4.5)

and the electric energy and the electromagnetic energy flux are in the ratio

ε0|E|2
2

:
E × B

µ0
= 1 : 2nM Re [eM × (κ × e∗

M )]. (2.4.6)

Only one parameter is required to relate the electromagnetic contributions
to the energy and the energy flux to the total energy and energy flux in the
waves. This is chosen to be the ratio of electric energy to total energy, RM (k),
which is regarded as a characteristic property for the wave mode M .

The way in which the contributions to the energy and energy flux due
to perturbed particle motions is assigned to the wave subsystem and to a
modification of the background system is partly a matter of choice, but there
are compelling reasons to make the specific choice adopted here. This choice
is dictated by the requirement that the ratio of the energy to the momentum
in the waves is ω : k. This is an essential requirement in any theory in which
the waves are interpreted as a distribution of wave quanta with, in ordinary
units, energy h̄ω and momentum h̄k.

2.4.3 Wave action

Let the total energy in waves in the modeM in the elemental range d3k/(2π)3

be WM (k)d3k/(2π)3. Granted that RM (k) is the ratio of electric to total
energy, it follows from (2.4.4) that WM (k) is given by

WM (k) =
ε0V |ωM (k)aM (k)|2

RM (k)
. (2.4.7)

A related quantity is the wave action,

AM (k) =
WM (k)
ωM (k)

. (2.4.8)

In a semiclassical formalism, in which quantum mechanical notation is used
but all the calculations are classical, the wave action, AM (k) divided by by h̄,
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is interpreted as the occupation number,NM (k), for wave quanta. Specifically,
one writes, in ordinary units,

AM (k) = h̄NM (k). (2.4.9)

In natural units (2.4.9) becomes AM (k) = NM (k), and NM (k) in the following
describes either the wave action or the occupation number.

For quantum mechanical purposes it is convenient to normalize to one
wave quantum with energy ωM (h̄ωM in ordinary units). This corresponds to
writingWM (k) = ωM (k)NM (k), and setting NM (k) = 1. In terms of the wave
action, (2.4.7) implies the normalization condition

aM (k) =
[
RM (k)NM (k)
V ε0ωM (k)

]1/2

. (2.4.10)

One sets NM (k) = 1 in (2.4.10) to obtain the desired quantum mechanical
normalization to one wave quantum in the volume V .

2.4.4 Work done by the dissipative part of the linear response

From the equation of energy continuity (1.2.22), 4-momentum is generated
by any current Jµ(x) at the rate Jα(x)Fαν(x). The average rate at which
4-momentum is transferred to the wave field by an extraneous current follows
by averaging over time:

1
T

∫
d4xJα

ext(x)Fα
µ(x) = − i

T

∫
d4k

(2π)4
kµJα

ext(k)Aα(k), (2.4.11)

where the power theorem (1.3.4) is used, and where the limit T → ∞ is im-
plicit. The extraneous current in (2.4.11) is now identified explicitly as the
current associated with the dissipative part of the linear response, that is, as
ΠAµν(k)Aν(k). The 4-potential Aµ(k) is identified with that given by (2.4.2)
for waves in the mode M . Then the rate at which 4-momentum is transferred
to the waves in an elemental range d3k/(2π)3, denoted Qµ

M (k)d3k/(2π)3, is
given by

Qµ
M (k) = −2i

RM (k)NM (k)
ε0ωM (k)

kµ
M Π

A
M (kM ), (2.4.12)

ΠA
M (kM ) = e∗Mα(k)eMβ(k)ΠAαβ(kM ). (2.4.13)

The quantity ΠA
M (kM ), which is pure imaginary, describes the effect of dissi-

pation on the waves in the mode M .
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2.4.5 Absorption coefficient

By inspection of (2.4.12), the power Q0
M (k) transferred to the waves is pro-

portional to the wave action NM (k), and hence to the energy WM (k) in the
waves. It follows that WM (k) varies exponentially. If this variation is purely
temporal, then the variation ofWM (k) is described by a factor exp[−γM (k)t],
where the quantity γM (k) is called the absorption coefficient for waves in the
mode M . The expression for the absorption coefficient implied by (2.4.12) is

γM (k) = −Q
0
M (k)

WM (k)
= 2i

RM (k)
ε0ωM (k)

ΠA
M (kM ). (2.4.14)

The absorption coefficient is the e-folding damping time for the wave energy
when the damping is purely temporal.

More generally, damping occurs in both time and space. Such damping is
described in terms of an imaginary part Im kµ

M of the wave 4-vector kµ
M for

waves in the mode M . The wave amplitude varies secularly as exp[Im kµ
Mxµ].

The wave energy, which is proportional to the square of the amplitude, varies
as exp[2 Imkµ

Mxµ]. Comparison of (2.4.14) and (2.3.3) implies that the coeffi-
cients for temporal and spatial damping are related by

ImωM − Im {k} · vgM (k) = − 1
2γM (k), (2.4.15)

where vgM (k) is the group velocity for waves in the mode M . The actual re-
lation between the temporal variation as exp[2 ImωM t] and the spatial varia-
tion as exp[−2 (Im k) · x] depends on the boundary conditions. The damping
is purely temporal (in a given frame) if the waves are uniformly excited every-
where initially, and the damping is purely spatial if there is a time-independent
point source for the waves. More generally, a mixture of temporal and spatial
damping occurs, and these are related to the absorption coefficient by (2.4.15).

2.4.6 Continuity equation for wave energy

The energy-momentum tensor for the waves is identified by requiring that the
two ways of including the dissipative part of the response lead to the same
form for the transfer equation for the wave 4-momentum

P ν
M (k) = kν

MNM (k), (2.4.16)

The imaginary part of kµ
M is given by (2.4.15) with (2.4.14), and also by

(2.3.3). The continuity equation for the energy in waves follows from (2.3.3) by
multiplying by −2i times the 4-momentum P ν

M (k), and dividing by ∂λ(k)/∂ω.
In view of the variation ∝ exp[2Im kµ

Mxµ] for the wave energy, 2Im kµ
M times

the energy or the wave 4-momentum is replaced by the operator ∂µ acting on
the wave 4-momentum. For waves in the mode M , λαρβσ(k) is rewritten in
terms of the polarization 4-vector using (2.3.10). In this was (2.3.3) gives
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∂µT
µν
M (k) = −γM (k)P ν

M (k),

T µν
M (k) = NM (k)vµ

gM (k)kν
M , vµ

gM (k) = [1,vgM (k)] (2.4.17)

where T µν
M (k) is the energy-momentum tensor and vgM (k) is the group veloc-

ity for waves in the mode M .
There was a controversy, which started early in the twentieth century be-

tween Abraham and Minkowski, on the correct form for the energy-momentum
tensor for waves. The form (2.4.17) is basically the Minkowski form. Abraham
argued that the energy-momentum tensor for waves must be symmetric, be-
cause the energy-momentum tensors for both particle and the electromagnetic
field are separately symmetric. It is now recognized that the presence of waves
also modifies the background system. The Minkowski energy-momentum ten-
sor for waves is not symmetric, and this implies that the modification to
the energy-momentum tensor for background system must also be asymmet-
ric, with only the sum of the two being required to be symmetric to satisfy
Abraham’s argument.

2.4.7 Interpretation of the energy-momentum tensor

The components of T µν
M (k) are

T 00
M (k) =WM (k) = ωM (k)NM (k), T 0j

M (k) = [P M (k)]j = kjNM (k),

T i0
M(k) = [F M (k)]i = [vgM (k)WM (k)]i, T ij

M (k) = [vgM (k)]i[P M (k)]j .
(2.4.18)

These are the energy density, the momentum density, the energy flux and the
stress 3-tensor, respectively, for waves in the mode M .

The identification of the total energy, WM (k) = P 0
M (k) = T 00

M (k), justifies
the interpretation of RM (k), as given by (2.3.11), as the ratio of electric to
total energy in the waves.

The foregoing derivation also determines the ratio of the energy flux to the
energy density, T i0

M(k)/T 00
M (k), in the waves. This ratio defines the velocity of

energy propagation v
(E)
M (k), in the waves. The derivation implies

v
(E)
M (k) = −

[
∂λ(k)
∂k

/∂λ(k)
∂ω

]
ω=ωM

=
∂ωM

∂k
= vgM (k). (2.4.19)

The velocity of energy propagation is the group velocity in any Lagrangian or
Hamiltonian description of a wave subsystem.
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2.5 Waves in isotropic and weakly anisotropic media

An isotropic medium is defined as a medium that is isotropic in its rest frame,
ũµ = [1,0]. In an isotropic medium the waves are either longitudinal or trans-
verse, and the properties of both classes of waves are discussed here. Trans-
verse waves are regarded as having two degenerate states of polarization, and
their polarization needs to be described by a polarization tensor or equivalent
formalism. In a weakly anisotropic medium the degeneracy of the transverse
modes is broken by including the anisotropy as a perturbation.

2.5.1 Longitudinal and transverse waves

In an isotropic medium the tensor Λµν(k) and the propagatorDµν(k) separate
into longitudinal, transverse and rotatory parts in the same way as Πµν(k) is
separated into such parts in (1.6.1). Thus one has

Λµν(k) = ΛL(k)Lµν(k, ũ) + ΛT (k)T µν(k, ũ) + ΛR(k)Rµν(k, ũ),

Dµν(k) = DL(k)Lµν(k, ũ) +DT (k)T µν(k, ũ) +DR(k)Rµν(k, ũ). (2.5.1)

Explicit evaluation using (1.6.16) gives

ΛL(k) = (kũ)2 + µ0Π
L(k), ΛT (k) = k2 + µ0Π

T (k), ΛR(k) = µ0Π
R(k).

(2.5.2)
From the definition (2.1.7) of the propagator, together with (2.5.1), one has

[ΛL(k)Lµν(k, ũ) + ΛT (k)T µν(k, ũ) + ΛR(k)Rµν(k, ũ)]
×[DL(k)Lµν(k, ũ) +DT (k)T µν(k, ũ) +DR(k)Rµν(k, ũ)]

= µ0

[
(kũ)2Lµν(k, ũ) + k2T µν(k, ũ)

]
. (2.5.3)

On equating the terms proportional to Lµν , T µν , Rµν on the left and right
hand sides, one finds

DL(k) = µ0
(kũ)4

k4ΛL(k)
, DT (k) = µ0

ΛT (k, ũ)
([ΛT (k)]2 − [ΛR(k)])2

,

DR(k) = µ0
ΛR(k)

([ΛT (k)]2 − [ΛR(k)])2
, (2.5.4)

where the relations (1.6.13) are used.
The natural modes correspond to the poles of the propagator. There are

poles at
ΛL(k) = 0, ΛT (k) = ±|ΛR(k)|, (2.5.5)

corresponding to longitudinal waves and to transverse waves, respectively.
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2.5.2 Polarization 4-vector for longitudinal waves

At the pole corresponding to ΛL(k) = 0, the numerator of the photon propa-
gator must be equal to the outer product of the polarization vector for longi-
tudinal waves with itself. The projection operator Lµν(k, ũ) is given by

Lµν(k, ũ) =
kαG

αµ(k, ũ) kβG
βν(k, ũ)

k2 − (kũ)2
, (2.5.6)

with, from (1.6.5), Gµν(k, ũ) = gµν − kµũν/kũ. This suggests that one choice
for the longitudinal 4-polarization is eµL ∝ kαG

αµ(k, ũ). By inspection this
choice corresponds to the Lorenz gauge. The normalization condition (2.3.8)
requires that one choose the rest frame, make a gauge transformation to the
temporal gauge and then impose the normalization (2.3.8). After normaliza-
tion, one may make a gauge transformation to identify the polarization vector
in any other gauge. Longitudinal polarization in the three familiar gauges
becomes

Lorenz gauge : e
(Lor)µ
L (k) =

(kũ)2 kµ − k2 kũ ũµ

k2[(kũ)2 − k2]1/2
, (2.5.7)

Coulomb gauge : e
(C)µ
L (k) = − kũ ũµ

[(kũ)2 − k2]1/2
, (2.5.8)

temporal gauge : e
(t)µ
L (k) =

kµ − kũ ũµ

[(kũ)2 − k2]1/2
, (2.5.9)

where the normalization is determined in the temporal gauge.

2.5.3 Transverse waves in optically active media

An optically active medium, also sometimes called a chiral medium, the rota-
tory part of the response is non-zero. Such media have a specific handedness:
they are either dextrorotatory or levorotatory. The transverse wave solutions
(2.5.5) correspond to polarization 4-vectors eµ± that satisfy

eµ±e
∗ν
± = −T µν

± (k, ũ) = − 1
2 [T µν(k, ũ) ±Rµν(k, ũ)]. (2.5.10)

These polarization vectors are orthogonal to both kµ and ũµ, so that they
simultaneously satisfy the Lorenz, Coulomb and temporal gauge conditions,
usually referred to as the radiation gauge. In the rest frame of the medium,
ũµ = [1,0], and with k along the 3-axis, the solutions are

eµ± =
1√
2
(0, 1,±i, 0), (2.5.11)

which are right and left circular polarizations, respectively.
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2.5.4 Degenerate transverse wave modes

In an isotropic medium with ΠR = 0, the two transverse modes are degener-
ate. This may be seen in several ways. First, the dispersion equation λ(k) = 0
gives

λ(k) =
1

(kũ)2
ΛL(k)

[
ΛT (k)

]2 = 0. (2.5.12)

The solutions of ΛL(k) = 0 correspond to longitudinal waves, and the double
solutions of ΛT (k) = 0 correspond to transverse waves. The fact that the
solution is double implies two degenerate transverse wave modes.

Another way of seeing that the transverse waves have a degenerate polar-
ization is by considering the poles of the propagator. As already remarked in
connection with longitudinal waves, the numerator in the propagator (2.5.1)
with (2.5.4) at the pole ΛL(k) = 0 must be the outer product of the polariza-
tion vector with itself for longitudinal waves, cf. (2.5.6) et seq. However, for
transverse waves for ΠR = 0, the pole at ΛT (k) = 0 is a double pole, and the
numerator T µν(k, ũ) is not the outer product of any 4-vector with itself. It
follows that there is no unique transverse polarization vector. A third way in
which one may see that this is the case is to consider the second order matrix
of cofactors, which have the general form (2.2.26). In an isotropic medium
with ΠR = 0, the second order cofactors are given by (omitting arguments k)

λµναβ = ΛT

{
ΛT
[
(gµα − T µα)(gνβ − T νβ) − (gµβ − T µβ)(gνα − T να)

]
+
ΛL

(kũ)2
[
gµαkνkβ − gναkµkβ − gµβkνkα + gνβkµkα

]}
. (2.5.13)

For longitudinal waves, on setting ΛL = 0, ΛT �= 0 in (2.5.13) the result
may be rewritten in the form (2.3.10) that allows one to identify the the
polarization 4-vector, resulting in an identification equivalent to that in (2.5.6)
et seq. However, for ΛT (k) = 0, (2.5.13) gives identically zero, again suggesting
that it is not possible to identify a unique polarization vector for degenerate
transverse modes.

It is of interest to choose a different gauge for the propagator to illus-
trate this point further. The propagator in the form (2.5.1) with (2.5.4) is
the counterpart of the Landau gauge. Specifically, the propagator in vacuo
in the form (2.1.20) is in the Landau gauge, which satisfies the conditions
kµD

µν(k) = kνD
µν(k) = 0, and the propagator (2.5.1) reduces to this form in

the absence of the medium (ΠL(k) = ΠT (k) = 0). The counterpart of the al-
ternative form (2.1.22) for the photon propagator in the temporal gauge may
be derived using (2.2.36), (2.2.37). In an isotropic medium this alternative for
the propagator applies only in the rest frame of the medium, where it has the
form

Dij(k) = −µ0

[
1

ΛL(k)
kikj

|k|2 − 1
ΛT (k)

(
gij +

kikj

|k|2

)]
,
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D00(k) = 0, Di0(k) = 0 = D0j(k). (2.5.14)

The pole at ΛL(k) = 0 implies that longitudinal waves have polarization
vector e ∝ k, as required in this frame. However, the pole at ΛT (k) = 0
does not imply a unique polarization vector, but rather a projection onto the
transverse plane.

2.5.5 Polarization of transverse waves

The polarization of transverse waves cannot be described in terms of a po-
larization vector, in general, and a second rank 4-tensor is required. Let the
polarization 4-tensor be denoted pµν(k). (Note that the name ‘polarization
4-tensor’ is used with several different meanings, and this name for pµν(k)
is used sparingly here.) The 4-tensor pµν(k) must be hermitian and it must
satisfy the wave equation with ΛT = 0. The latter condition requires

Lµ
σ(k, ũ)pσν(k) = 0. (2.5.15)

The temporal, Lorenz and Coulomb gauges are all equivalent in the rest frame
of the medium, becoming the radiation gauge, which satisfies

kµp
µν(k) = 0, ũµp

µν(k) = 0. (2.5.16)

A convenient normalization of the polarization 4-tensor that satisfies these
conditions is

pµ
µ(k) = −1. (2.5.17)

A general form for the polarization 4-tensor is

pµν = 1
2

⎛
⎜⎜⎝

0 0 0 0
0 1 + pQ pU − ipV 0
0 pU + ipV 1 − pQ 0
0 0 0 0

⎞
⎟⎟⎠ , (2.5.18)

where pQ, pU and pV are all real.
It is convenient to omit the rows and columns of zeros in (2.5.18), and to

write polarization tensors as 2 × 2 matrices. Thus (2.5.18) is written

pµν = 1
2

(
1 + pQ pU − ipV

pU + ipV 1 − pQ

)
, (2.5.19)

with µ, ν running over the two transverse components (with the longitudinal
and time-like components identically zero).

A general transverse polarization (2.5.19) consists of an unpolarized part
and a completely polarized part. Let the polarization 4-vector (in the temporal
gauge) for the polarized part be eµ. Then (2.5.19) reduces to the form

pµν = 1
2 (1 − p)gµν + p eµe∗ν , p = (p2Q + p2U + p2V )1/2, (2.5.20)



2.5 Waves in isotropic and weakly anisotropic media 63

e1
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γ

Fig. 2.1. For a wave propagating into the page the axial ratio T is positive when the
electric vector rotates in the clockwise sense, as illustrated, and is equal in magnitude
to the ratio AC/BD.

where p is the degree of polarization. The most general polarization vector is
elliptical. This is seen by rotating the axes, to choose a new set of (primed)
axes such that the counterpart of (2.5.19) has pQ′ = (p2Q + p2U )1/2, pU ′ = 0,
pV ′ = pV . The axial ratio of the polarization ellipse is T = pQ′/pV ′ = (p2Q +
p2U )1/2/pV . The handedness of the polarization is defined as the direction
of rotation of the electric vector in a screw sense relative to k, with T > 0
corresponding to right hand and T < 0 to left hand. An example of an elliptical
polarization is illustrated in Fig. 2.1, where χ is the angle through which the
rotation is made.

2.5.6 Sum over transverse states of polarization

When the polarization of transverse waves is of no interest, one sums (or
averages, the average being half the sum) over the two states of transverse
polarization. The sum of the outer product of the two polarization 4-vectors
spans the transverse plane. Consequently the sum must give∑

pol

e∗µeν = −T µν(k, ũ), (2.5.21)

where T µν(k, ũ) = gµν + [kũ(kµũν + kν ũµ) − k2ũµũν − kµkν ]/[k2 − (kũ)2] is
defined by (1.6.9).

In vacuo further simplification occurs by first setting k2 = 0, in which
case (1.6.9) gives T µν(k, ũ) = gµν − (kµũν + kν ũµ)/kũ + kµkν/(kũ)2. If one
further appeals to the fact that the sum (2.5.21) is projected onto currents
that satisfy kJ = 0, it follows that (2.5.21) is replaced by the simpler form
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pol

e∗µeν = −gµν . for k2 = 0. (2.5.22)

However, (2.5.22) needs to be used with care; for example, if one considers
its trace then it suggests

∑
pol e

∗µeµ = −4, whereas the sum over the two
polarizations actually gives −2, which is the result implied by (2.3.18). Note
also that (2.5.22) is not valid for k2 �= 0, when it is replaced by

∑
pol

e∗µeν = −gµν +
k2ũµũν

(kũ)2 − k2
, for k2 �= 0, (2.5.23)

for conserved currents. An interpretation of the distinction between (2.5.22)
and (2.5.23) is that in a frame other than the rest frame of the medium, the
polarization of transverse waves has a time-like or longitudinal component.
(One may remove either the time-like or the longitudinal component by a
gauge transformation, but both cannot be eliminated simultaneously.) It is
only in the rest frame of the medium that the polarization of ‘transverse’
waves is actually transverse.

2.5.7 Transverse waves in weakly anisotropic media

For many purposes the full theory of wave dispersion is unnecessarily cum-
bersome, and simplifying approximations are made. One such approximation
is that the medium is nearly isotropic, with the small anisotropy being im-
portant in that it breaks the degeneracy between the two transverse states
of polarization. An approximation that allows one to include the qualitative
effects of anisotropy in a relatively simple way is the weak-anisotropy limit
[2].

Suppose that the contribution of the response of the medium is treated as
a perturbation. Then zeroth order corresponds to waves in vacuo, with the
dispersion relation k2 = 0. The components of the response tensor appear
in the combination (2.2.19), viz., tµν(k) = µ0Π

µν(k), and the perturbation
assumption is that the actual value of k2 is determined by expanding in the
invariants constructed from this quantity. These invariants are the traces, cf.
(2.2.2).

On expanding the dispersion equation λ(k) = 0 to second order in k2,
(2.2.25) gives

λ(k) = k4 + k2t(1)(k) + 1
2

{[
t(1)(k)

]2 − t(2)(k)} = 0. (2.5.24)

Evaluating the invariants solution at k2 = 0, and writing t(1) = t(1)(0) and
t(2) = t(2)(0), (2.5.24) becomes a quadratic equation for k2. Let the solutions
be labeled as the ± modes. These solutions are

k2 = k2
± = − 1

2 t
(1) ± 1

2

[
2t(2) − (t(1))2

]1/2
. (2.5.25)
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An alternative way of deriving the dispersion relations is to start from the
wave equation in the radiation gauge, where there are components only in the
transverse plane, with zero time-like and longitudinal components. The wave
equation reduces to the 2-dimensional equation

[k2gµν + tµν(k)]Aν(k) = 0, (2.5.26)

where µ, ν run over only the transverse components 1, 2 as defined above. On
setting the determinant of the coefficients equal to zero, the condition for a
solution to exist leads to (2.5.24) with

t(1) = t11 + t22, t(2) = (t11 + t22)2 − 2t11t
2
2 + 2t12t

2
1. (2.5.27)

The solution (2.5.25) is reproduced. One may also rewrite the solution using
(2.5.27):

k2 = k2
± = − 1

2 (t11 + t22) ± 1
2

[
(t11 − t22)2 + 4t12t

2
1

]1/2
, (2.5.28)

with t12 = −t21 pure imaginary.
The eigenfunctions of (2.5.26) give the polarization vectors in the radiation

gauge. These are

eµ± =
T±e

µ
1 + ieµ2(

T 2± + 1
)1/2

, (2.5.29)

where eµ1 and eµ2 are unit vectors along two axes orthogonal to both kµ and
ũµ. The polarization vectors (2.5.29) correspond to orthogonal elliptical po-
larizations with axial ratios

T± =
t11 − t22 ±

[
(t11 − t22)2 + 4t12t

2
1

]1/2

2it12
, (2.5.30)

with the orthogonality of the two modes corresponding to T+T− = −1.

2.5.8 Transfer equation for polarized radiation

The 2-dimensional wave equation (2.5.26) implies a transfer equation for po-
larized radiation in a weakly anisotropic medium. Let

tµν(k) = t0(k)gµν +∆tµν(k), (2.5.31)

be a separation into a part t0(k)gµν that is symmetric and real, and a part
that includes both the anisotropic and dissipative effects in ∆tµν(k). Solving
(2.5.26) for ∆tµν(k) = 0 gives the dispersion relation k2 = −t0(k). Includ-
ing ∆tµν(k) as a perturbation leads to a time evolution in which the two
(transverse) components, A1, A2, of the 4-potential are coupled together. To
derive the transfer equation one includes an imaginary part of the frequency,
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iImω, and solves for this in terms of ∆tµν(k). The secular change in Aµ is as
exp(Imωt), and hence (2.5.26) implies

dAµ

dt
=

i∆tµν(k)
2ωn d(ωn)/dω

Aν , (2.5.32)

with n = |k|/ω. The correction terms ∆tµν(k) has both an hermitian part
and an antihermitian part. The latter describes absorption of the waves. The
absorption term is of the form dAµ/dt = − 1

2γ
µ

νA
ν , where the quantity γµ

ν

is a generalization of the absorption coefficient that takes into account the
different rates of damping for the different polarizations. From (2.5.32) one
identifies

γµν(k) = 2i
R(ω)
ε0ω

∆ΠAµν(k), (2.5.33)

with µ, ν = 1, 2, and with R(ω) = 1/[2nd(ωn)/dω] identified as the ratio of
electric to total energy for transverse waves, cf. (2.3.18). The result (2.5.33)
is the counterpart for transverse waves of the absorption coefficient (2.4.14)
for nondegenerate wave modes.

Equation (2.5.32) may also be interpreted as the transfer equation for po-
larized radiation in a weakly anisotropic medium. Assuming the variation
in the amplitude to be spatial, the left hand side of (2.5.32) is replaced
by vg dAµ/ds, where s denotes distance along the ray path, and with the
group speed given by vg = c/[d(ωn)/dω] in the isotropic approximation. Then
(2.5.32) gives

dAµ

ds
=

i

2nωc
∆tµνAν = 1

2

(
irµν + µµν

)
Aν ,

rµν =
1
nωc

∆tHµν , µµν =
i

nωc
∆tAµν . (2.5.34)

The term rµν describes polarization changes that are attributed to the radia-
tion being decomposed into the two natural wave modes that get progressively
out of phase due to the difference in their refractive indices. In a magnetized
plasma at high frequencies, where the natural modes are circularly polarized,
this leads to the Faraday effect, which is a rotation of the plane of linear
polarization. In the more general case, when the natural modes are elliptical
and the polarization of the radiation is elliptical with a different shape and
orientation from the natural modes, (2.5.34) describes a generalized Faraday
effect in which the shape and orientation of the polarization ellipse change in
a specific periodic manner that depends on the details of the ellipses. Specif-
ically, on the Poincaré sphere the representative point of the polarization of
the radiation rotates at constant latitude with respect to an axis defined by
the polarization of the natural modes [3]. The term µµν in (2.5.34) describes
spatial absorption, with µµν = γµν/vg, cf. (2.5.33).
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2.5.9 Stokes parameters

A conventional description of the polarization of transverse waves is in terms
of the Stokes parameters, I, Q, U , V , where I is the specific intensity, or
brightness and the three parameters q = Q/I, u = U/I, v = V/I characterize
the polarization. Introducing Iµν ∝ AµA∗ν , one uses (2.5.19) to write

Iµν = 1
2

(
I +Q U − iV
U + iV I −Q

)
, rµν =

(
rQ rU − irV

rU + irV −rQ

)
,

µµν =
(
µI + µQ µU − iµV

µU + iµV µI − µQ

)
. (2.5.35)

The transfer equation (2.5.34) and its complex conjugate, with r∗µν = rνµ,
µ∗µν = µνµ, imply

dIµν

ds
= 1

2 (irµα + µµα)Iαν + 1
2 (−irβν + µβν)Iµ

β . (2.5.36)

It is convenient to introduce a Stokes vector SA = (I,Q, U, V ) and to allow
upper case roman subscripts to run over I,Q, U, V . Then the transfer equation
(2.5.36) translates into

dSA

ds
= rABSB − µABSB, (2.5.37)

rAB =

⎛
⎜⎜⎝

0 0 0 0
0 0 −ρV ρU

0 ρV 0 −ρQ

0 −ρU ρQ 0

⎞
⎟⎟⎠ , µAB =

⎛
⎜⎜⎝
µI µQ µU µV

µQ µI 0 0
µU 0 µI 0
µV 0 0 µI

⎞
⎟⎟⎠ ,

(2.5.38)

where in the matrix form, SA is written as a column vector, and where the sum
(over I, Q, U , V ) over repeated indices is implied. The term involving rAB

describes the generalized Faraday effect, and the term involving µAB describes
polarization-dependent absorption. The generalized Faraday effect preserves
the total intensity, I, and the degree of polarization, (Q2 + U2 + V 2)1/2/I.

The formalisms used in (2.5.36) and (2.5.37) are sometimes referred to
as the Jones calculus and the Mueller calculus, respectively. The translation
between then may be represented in terms of group theory, with these corre-
sponding to the groups SU2 and O4, respectively. This translation is facilitated
by introducing the Pauli matrices, written here as

σµν
I =

(
1 0
0 1

)
, σµν

Q =
(

1 0
0 1

)
,

σµν
U =

(
0 1
1 0

)
, σµν

V =
(

0 −i
i 0

)
. (2.5.39)
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One has
Iµν = 1

2

∑
A

SAσ
µν
A , SA = σµν

A Iµν , (2.5.40)

where A runs over I,Q, U, V , and where µ, ν run over the two transverse
components.
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2.6 Lorentz transformation of wave properties

The properties of waves in a medium are usually calculated in the rest frame
of the medium. If the medium is moving in the laboratory frame one may
find the wave properties in the laboratory frame either by calculating the
wave properties in this frame or by calculating the wave properties in the rest
frame and Lorentz transforming to the laboratory frame. The latter procedure
is discussed in this section.

2.6.1 Transformation of the wave 4-vector

In a model in which the wave properties are derived in one frame and are
required in another frame, one makes a Lorentz transformation to relate the
wave properties in the two frames. Assuming that the two frames are moving
relative to each other with velocity β and Lorentz factor γ = 1/(1 − β2)1/2,
the Lorentz transformation is described by the standard boost with transfor-
mation matrix given by (1.1.16). In the unprimed frame, let k‖ = |k| cos θ,
k⊥ = |k| sin θ denote the components of k parallel and perpendicular, respec-
tively, to the direction of the relative velocity, with analogous definitions in
the primed frame.

The transformation of the wave 4-vector, kµ′
= Lµ′

µk
µ and its inverse,

kµ = Lµ
µ′kµ′

, relate the frequencies and wavevector components in the primed
and unprimed frames:⎛

⎝ ω′

k′⊥
k′‖

⎞
⎠ =

⎛
⎝ γ(ω + k‖β)

k⊥
γ(k‖ + ωβ)

⎞
⎠ ,

⎛
⎝ ω
k⊥
k‖

⎞
⎠ =

⎛
⎝ γ(ω′ − k′‖β)

k′⊥
γ(k′‖ − ω′β)

⎞
⎠ . (2.6.1)

In terms of the refractive indices, n = |k|/ω, n′ = |k′|/ω′ and angles of
propagation, θ = arctan(k⊥/k‖), θ′ = arctan(k′⊥/k

′
‖), the relations (2.6.1)

imply

ω′ = γω(1 + nβ cos θ), ω = γω′(1 − n′β cos θ′),

n′ sin θ′ =
n sin θ

γ(1 + nβ cos θ)
, n sin θ =

n′ sin θ′

γ(1 − n′β cos θ′)
,

n′ cos θ′ =
n cos θ + β
1 + nβ cos θ

, n cos θ =
n′ cos θ′ − β
1 − n′β cos θ′

,

n′2 − 1 =
n2 − 1

γ2(1 + nβ cos θ)2
, n2 − 1 =

n′2 − 1
γ2(1 − n′β cos θ′)2

,

tan θ′ =
n sin θ

γ(n cos θ + β)
, tan θ =

n′ sin θ′

γ(n′ cos θ′ − β) . (2.6.2)

To relate the dispersion relations in the two frames, it is simplest to write
the dispersion relation in one frame in terms of invariants, and then interpret
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the invariants in terms of the appropriate transformed variables. The simplest
case is for transverse waves in an isotropic plasma. The dispersion relation ω =
(ω2

p+|k|2)1/2 or n = (1−ω2
p/ω

2)1/2, may be written in the invariant form k2 =
ω2

p. Then, with k2 = k′2, the dispersion equation becomes k′2 = ω2
p, implying

ω′ = (ω2
p + |k′|2)1/2 or n′ = (1 − ω2

p/ω
′2)1/2 in the primed frame. However,

this example is deceptively simple compared with more general dispersion
relations.

2.6.2 Longitudinal waves in a nonrelativistic thermal plasma

Simple examples of wave modes in isotropic plasma are Langmuir waves and
ion acoustic waves in a nonrelativistic thermal plasma.

The properties of Langmuir waves are derived by retaining only the contri-
bution of thermal electrons in the expression (1.7.9) for ΠL(k), and assuming
|y2e | � 1, which corresponds to phase speeds ω/|k| � 21/2Ve. One finds

ω� = (ω2
p + 3|k|2V 2

e )1/2, e� = k/|k|, R�(k) = ω2
p/2ω

2
� . (2.6.3)

The imaginary part in ΠL(k) implies the absorption coefficient for Landau
damping,

γ�(k) =
(π

2

)1/2 {ω�}4

|k|3V 3
e

exp
[
− ω2

�

2|k|2V 2
e

]
. (2.6.4)

The properties of ion acoustic waves are found approximating the plasma
dispersion function (1.7.14) assuming ye � 1 for electrons and yi � 1 for the
ions. This gives

ΠL(k)
ε0

≈ ω2

k2λ2
De

− ω2
pi. (2.6.5)

The dispersion relation ω2 +ΠL(k)/ε0 = 0 for longitudinal waves gives

ω = ωs(k) ≈
kvs

[1 + k2λ2
De]1/2

, (2.6.6)

where vs = ωpiλDe is the ion sound speed. In the limit kλDe � 1 the dispersion
relation (2.6.6) reduces to ω ≈ kvs, which is characteristic of a sound wave.
The ratio of electric to total energy is

Rs(k) ≈
1
2

[
ωs(k)
ωpi

]2
, (2.6.7)

and the absorption coefficient is

γs(k) ≈
(π

2

)1/2

ωs(k)

{
vs
Ve

+
[
ωs(k)
kVi

]3
e−[ωs(k)]2/2k2V 2

i

}
. (2.6.8)

The two terms inside the curly brackets in (2.6.8) are due to Landau damping
by thermal electrons and by thermal ions, respectively. The damping by ther-
mal ions is strong for vs ≈ Vi, and ion acoustic waves exist as weakly damped
waves only for vs � Vi, which requires ZiTe � Ti.
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2.6.3 Langmuir waves in a moving frame

The dispersion relation for Langmuir waves in a moving (primed) frame can
be found either by Lorentz transforming the dispersion relation from the rest
frame or by solving the dispersion equation in the primed frame.

The dispersion relation in the primed frame becomes

1 +
1 − φ(ye)

[|k′|2 sin2 θ′ + γ2(|k′| cos θ′ − ω′β)2]λ2
D

= 0,

ye =
γ(ω′ − |k′|β cos θ′)

21/2[|k′|2 sin2 θ′γ2(|k′| cos θ′ − ω′β)2]Ve

, (2.6.9)

where the damping is ignored. The solution (2.6.3) in the rest frame becomes
an implicit equation of the dispersion relation in the primed frame:

γ2(ω′−|k′|β cos θ′)2 = ω2
p +3[|k′|2 sin2 θ′ +γ2(|k′| cos θ′−ω′β)2]V 2

e . (2.6.10)

An approximate dispersion relation is found by assuming the term involving
V 2

e is a small correction and using a perturbation approach. To first order,
(2.6.10) has two solutions:

ω′ − |k′|β cos θ′ = ±ωp/γ. (2.6.11)

The solution with the positive sign applies in the rest frame, but one needs
to replace it by the solution with the negative sign in a frame moving with
velocity β > ωp/γ|k′| cos θ′ such that ω′ would be negative. A wave in the rest
frame with phase velocity less than β in the direction of the boost appears to
be propagating in the backward direction in the primed frame.

The polarization of a wave that is longitudinal in the rest frame is not longi-
tudinal in the primed frame. A longitudinal polarization in the rest frame cor-
responds to a polarization 4-vector eµL = κµ = [0,κ], with κ = (sin θ, 0, cos θ)
where the axes are choose such that the boost is along the 3-axis and k is in the
1-3 plane. Making the Lorentz transformation, the transformed polarization
vector is not in the temporal gauge and one needs to make a gauge transfor-
mation to restore the temporal gauge. After making the gauge transformation
to the temporal gauge, let the transformed longitudinal polarization vector be
denoted eµ

′
L = [0,κt]. One finds

κt =
γω

ω′|k| (|k|′ sin θ′, 0, |k|′ cos θ′ − ω′β), (2.6.12)

where (2.6.1) is used. Clearly κt is not equal to the longitudinal polarization,
κ′ = (sin θ′, 0, cos θ′), in the primed frame. Moreover, the normalization of
the polarization vector is not preserved, |κt|2 �= 1. The normalization of the
polarization vector and the identification of the ratio of electric to total energy
are related, cf. (2.3.11), and the Lorentz transformation changes the ratio of
electric to total energy in the waves.
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The cutoff frequency for both Langmuir waves (and transverse waves) in
a nonrelativistic thermal plasma is ω = ωp for |k| = 0 in the rest frame.
Using (2.6.1) one finds that ω = ωp, |k| = 0 in the rest frame corresponds to
ω′ = γωp, |k′| = γβωp in the primed frame. Note that a cutoff in one frame
does not transform into a cutoff in another frame: |k| = 0 does not imply
|k′| = 0. The cutoff for Langmuir waves in the primed frame is determined
by setting |k′| = 0 in (2.6.10). More generally, although the properties of
Langmuir waves are relatively simple in the rest frame, they become much
more complicated in a frame moving at relativistic speed relative to the rest
frame.

2.6.4 Transverse waves in a moving frame

The dispersion relation for transverse waves in a nonrelativistic isotropic
plasma may be written in the invariant form k2 = ω2

p, which has the same
form in all frames. Thus in the primed frame one has ω′2 = ω2

p + |k′|2 or
n′2 = 1 − ω2

p/ω
′2, where ωp is the plasma frequency evaluated in the rest

frame.
‘Transverse waves’ are transverse only in the rest frame: they are not trans-

verse in the primed frame. This may be seen by introducing two orthonormal
vectors, t = (cos θ, 0,− sin θ), a = (, 0, 1, 0) that span the transverse plane,
orthogonal to κ = (sin θ, 0, cos θ) in the rest frame and transforming them
to the primed frame. This involves making a Lorentz transformation to the
laboratory frame and a gauge transformation to restore the temporal gauge,
as in the derivation of (2.6.12). The counterpart of (2.6.12) is

tt =
1
n

(
n′ cos θ′ − β(1 − n′2)

1 − n′β cos θ′
, 0,−n′ sin θ′

)
, at = a. (2.6.13)

One may rewrite (2.6.13) as

tt =
1
n

(
n′ − (1 − n′2)β cos θ′

1 − n′β cos θ′

)
t′ − 1

n

(1 − n′2)β sin θ′

1 − n′β cos θ′
κ′, at = a′,

(2.6.14)
with κ′ = (sin θ′, 0 cos θ′), t′ = (cos θ′, 0,− sin θ′), a′ = (0, 1, 0). It follows
that the transformed vector is transverse in the primed frame (tt = t′) only
in vacuo, that is, for n = n′ = 1.

A general transverse polarization is of the form (2.5.20), which involves
the degrees of polarization, p, and parameters, pQ, pU , pV , that describe the
polarization of the polarized part, which is elliptical in general. One is free
to choose the axes such that the polarization vector for the polarized part is
e = (T t+ia)/(1+T 2)1/2, where T is the axial ratio of the polarization ellipse.
A general polarization then has a polarization tensor, cf. (2.5.20), with space
components

pij = 1
2 (1 − p) (titi + aiaj) + p (T ti + iai)(T tj + iaj)/(1 + T 2). (2.6.15)
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By hypothesis, the polarization tensor has only transverse components, with
κip

ij = 0 = κjp
ij . On transforming (2.6.15) using (2.6.14), the transformed

3-tensor, pij
t , is obtained simply by adding subscripts to t, a on the right

hand side. However, the transformed 3-tensor is not transverse in general,
and so cannot be interpreted as a polarization tensor. It is only in vacuo that
the polarization remains transverse, with p and T unchanged, such that the
arbitrary elliptical polarization transforms into e′ = (T t′ + ia′)/(1 + T 2)1/2.

The cutoff at ω = ωp, |k| = 0 in the rest frame transforms into ω′ = γωp,
|k′| = γβωp in the primed frame. The cutoff in the primed frame is ω′ = ωp,
|k′| = 0. Waves in the range γωp > ω

′ > ωp in the primed frame come from
a restricted range of angles in the unprimed frame, with this range shrinking
to zero for ω′ → ωp.

2.6.5 Transformation of wave energetics

The components of the energy-momentum tensor, T µν
M (k) = NM (k)vµ

gMk
ν
M ,

are given by (2.4.18) in the rest frame of the plasma. The corresponding tensor
in the primed frame follows simply by Lorentz transforming. The occupation
number, NM (k), is an invariant, and so one needs only to rewrite vµ

gMk
ν
M

in terms of the primed variables to identify the components of the energy-
momentum tensor in the primed frame. However, this is not trivial because
T µν

M (k) is not a 4-tensor. It is the quantity T µν
M (k)d3k/(2π)3 that transforms

as a 4-tensor.Thus the transformation also involves the Jacobian that relates
the differentials d3k′, d3k: this Jacobian reduces to

∂k′‖
∂k‖

= γ(1 + βvgM‖), (2.6.16)

where (2.6.1) is used, and with βgM‖ = vgM‖, vgM‖ = ∂ωM (k)/∂k‖. Taking
this factor into account, the transformed counterpart of vµ

gM is

vµ′
gM =

(
γ(1 + βvgM‖), vgMx, vgMy , γ(vgM‖ + β)

)
γ(1 + βvgM‖)

. (2.6.17)

Thus the transformed group velocity is

v′
gM =

(
vgMx, vgMy , γ(vgM‖ + β)

)
γ(1 + βvgM‖)

. (2.6.18)

With this form for v′
gM , transformation of the energy-momentum tensor is

straightforward.
Writing the occupation number as N ′

M (k′), the primed components of the
energy-momentum tensor become

W ′
M (k′) = ω′

M (k′)N ′
M (k′), P ′

M (k′) = k′N ′
M (k′),

F ′
M (k′) = v′

gMW
′
M (k′), T ′i′j′

M (k′) = [v′
gM ]i

′
[P ′

M (k′)]j
′
. (2.6.19)
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Thus, the energy density transforms as the frequency, and the momentum
density transforms as the wave vector.

As already noted, the frequency, ω′, in the primed frame becomes negative
when β exceeds the component of phase velocity along the direction of the
boost. There are always two solutions of the dispersion equation and one is
free to choice the positive-frequency solution. When a Lorentz transformation
causes the frequency to change sign, one is to choose the other solution, which
has a positive frequency.

The energy flux is proportional to the vector v′
gM , given by (2.6.18), which

plays the role of the group velocity in the primed frame. The component of
v′

gM along the direction of the boost corresponds to a relativistic addition of
the velocities β, vgM‖. A physical interpretation is in terms of wave quanta
propagating at the group velocity: in the primed frame the wave quantum
propagates according to the relativistic addition formula for the two velocities.

2.6.6 Transformation of RM

The transformation of the ratio of electric to total energy may be inferred
using (2.3.11) and (2.3.10). Omitting labels and arguments for simplicity in
writing, these become

R =
λ0σ

0σ

ω∂λ/∂ω
, λµναβ = −λ

0σ
0σ

ω2
(eµkν − eνkµ)(eαkβ − eβkα)∗, (2.6.20)

respectively. The objective is to find the ratio of electric energy in the primed
frame,

R′

R
=

(
λ0′σ

0′σ

λ0σ
0σ

) (
ω′∂λ/∂ω′

ω∂λ/∂ω

)−1

. (2.6.21)

Consider the first factor on the right hand side of (2.6.21). From the second
of (2.6.20) one has

λµσ
ασ = −λ

0σ
0σ

ω2
[eµe∗αk

2 − ek (eµkα + kµe∗α) − kµkα], (2.6.22)

with ek = −e · k and where eσe∗σ = −1 is used. The quantity (2.6.22) is a
second rank 4-tensor, and it is straightforward to apply a Lorentz transfor-
mation to it to construct λµ′σ

α′σ, and hence to identify λ0′σ
0′σ in terms of

λ0σ
0σ and the components of eµ, kµ. One finds

λ0′σ
0′σ

λ0σ
0σ

= γ2(1 + nβ cos θ)2(1 − e2‖) + e2‖(1 + γ2n2β2 sin2 θ)

− 2γ2nβe‖(e · κ)⊥(1 + nβ cos θ). (2.6.23)

The second factor in (2.6.21) involves the derivatives of the invariant λ with
respect to ω′ at fixed k′, and with respect to ω at fixed k, with ω′,k′ and
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ω,k related by (2.6.1). The chain rule implies (∂λ/∂k‖)/(∂λ/∂ω) = −∂ω/∂k‖,
where ∂ω/∂k‖ = vg‖ is the component of the group velocity along the direction
of the boost. One finds

ω′∂λ/∂ω′

ω∂λ/∂ω
= γ2(1 + nβ cos θ)(1 + βvg‖). (2.6.24)

Substituting (2.6.23) and (2.6.24) into (2.6.21) determines how the ratio of
electric to total energy transforms. Even in the simplest cases, the transfor-
mation of the ratio of electric to total energy is relatively cumbersome.
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3

Particle and wave subsystems

A plasma is a collection of individual particles coupled together through the
electromagnetic field. These coupled particles constitute a collective medium.
The reinterpretation of a collection of individual particles and the electro-
magnetic field as a collective medium requires a formal rearrangement of the
‘bare’ particles and electromagnetic field into a background system of ‘dressed’
particles, sometimes called quasiparticles, and a ‘self-consistent’ field that in-
cludes the collective response of the medium. The free oscillations of the self-
consistent field constitute wave subsystems. To identify wave subsystems as
distinct subsystems one needs to identify the Lagrangian for the subsystem,
and this is obtained from the Lagrangians for the free particles and free fields
by an appropriate rearrangement. There are several different ways of carrying
out the rearrangement and three are discussed here. All of them lead to ex-
plicit expressions for the response tensors of the collective medium. The three
approaches are the forward-scattering approach, the Vlasov approach and the
oscillating-center approach. A cold plasma approach is also discussed: it may
be adapted to give the linear and nonlinear response tensors for an arbitrary
(unmagnetized) plasma, and in this sense it is a fourth approach.

A covariant Lagrangian approach is introduced in §3.1, and the separation
into background and wave subsystems is made in §3.2. The forward-scattering
method is discussed in §3.3, the cold plasma model is discussed in §3.4, and the
covariant Vlasov approach is discussed in §3.5. A Lagrangian description of a
wave subsystem is introduced in §3.6, and a covariant version of ray theory is
discussed in §3.7.
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3.1 Covariant Lagrangians for free particles and fields

The most general approach to the description of a mechanical system, includ-
ing a systems involving fields, is based on a Lagrangian formalism, that is, on
the calculus of variations applied to an action integral. In a covariant version
of such a theory, the Lagrangian (or Lagrangian density) can be a function
only of quantities that are Lorentz invariants. A procedure for constructing the
covariant Lagrangian for a classical system of particles from the Lagrangian
for a single particle [1, 2, 3] is described in this section.

3.1.1 Lagrangian density

The starting point for the development of a Lagrangian theory is the action
integral, I, for the system expressed in terms of the Lagrangian density, L(x):

I =
∫
d4xL(x), L(x) =

∑
LP(x) + LEM(x), (3.1.1)

where LP(x) describes the free particles and LEM(x) describes the free electro-
magnetic field. The sum in (3.1.1) is over all species of particle. The covariant
form of LP(x) is identified as follows.

The non-covariant Lagrangian L(x,v, t) for a single particle, with charge
q and mass m, is

I =
∫
dt L(x,v, t),

L(x,v, t) = −m(1 − v2)1/2 − qφ(x, t) + qv · A(t,x), (3.1.2)

where φ(t,x) and A(t,x) are the scalar and vector potentials describing the
electromagnetic field. The equation of motion in Lagrangian form is[

d

dt

∂

∂v
− ∂

∂x

]
L(x,v, t) = 0. (3.1.3)

A covariant Lagrangian, R(x, u), is defined by writing the action integral
(3.1.2) in terms of the proper time τ :

I =
∫
dτ R(x, u), R(x, u) = −m− q uA(x), (3.1.4)

with dτ = dt/γ and R(x, u) = γL(x,v, t). The generalized velocity is the
4-velocity, u, and that τ plays the role of the independent variable.

The covariant form of the Lagrangian equation of motion (3.1.3) is ob-
tained by applying the variational principle δI = 0 to (3.1.4). On making
the replacement xµ → xµ + ξµ, where ξµ denotes the variation, one needs to
take account of the variation, δτ , in the proper time, as well as the variations
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δxµ = ξµ and δuµ. The changes satisfy d(xµ + δxµ) = (uµ + δuµ)(dτ + dδτ).
The condition u2 = 1 also requires (uµ + δuµ)(uµ + δuµ) = 1, which implies
uµ δuµ = 0 to first order in the perturbation. These relations give

dδτ

dτ
= uµ dδxµ

dτ
, δuµ =

dδxµ

dτ
− uµ dδτ

dτ
. (3.1.5)

The variational principle becomes

0 = δI =
∫
dτ

[
dδτ

dτ
+ δxµ∂µ + δuµ ∂

∂uµ

]
R(x, u). (3.1.6)

The covariant counterpart of the Lagrangian equation of motion, corre-
sponding to (3.1.3), is

d

dτ

{[
(gµν − uµuν)

∂

∂uν
+ uµ

]
R(x, u)

}
− ∂µR(x, u) = 0. (3.1.7)

The independent variable is the proper time, τ , and the dependence of R(x, u)
on this variable is implicit. It needs to be made explicit, and this is achieved
by considering the orbit of the particle.

3.1.2 Orbit of the particle

A covariant description of the orbit of a particle requires that xµ = [t,x] be
given as a function of τ . Thus both t and x need to be expressed as functions
of the variable τ . One has

dτ

dt
= (1 − v2)1/2 = γ−1, (3.1.8)

which, in principle, is integrated and inverted to give t = t(τ). Writing the
position along the orbit as x = X(τ), with X(τ) = X

(
t(τ)

)
, one has the

orbit in the desired covariant form:

xµ = Xµ(τ). (3.1.9)

The instantaneous 4-velocity uµ is

uµ(τ) =
d

dτ
Xµ(τ). (3.1.10)

The orbit is found by integrating the equation of motion twice.
The equation of motion in covariant form follows from (3.1.7), or directly

by writing Newton’s equation of motion in covariant form. Newton’s equation
of motion, dp/dt = F , may be written in the covariant form

dpµ

dτ
= Fµ(x, p), Fµ = [γv · F , γF ], (3.1.11)
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where Fµ is the 4-force. When the only force acting is the electromagnetic
force, one has

Fµ(x, p) = qFµν(x)uν , (3.1.12)

where Fµν(x) is the Maxwell tensor and with pµ = muµ.
Suppose that the electromagnetic field Fµν(x) consists of a static field,

Fµν
0 , and a fluctuating field. On Fourier transforming and representing the

fluctuating part in terms of the 4-potential, Aµ(k), the equation of motion
becomes

duµ(τ)
dτ

=
q

m
Fµν

0 uν(τ) +
iq

m

∫
d4k′

(2π)4
e−ik′X(τ) k′u(τ)Gµν

(
k′, u(τ)

)
Aν(k′),

Gµν(k, u) = gµν − k
µuν

ku
. (3.1.13)

Except where stated otherwise, the static field Fµν
0 is assumed to be zero.

3.1.3 Perturbation expansion in A(k)

One may solve the equation of motion (3.1.13) using a perturbation approach.
In the absence of any static field, the unperturbed motion of the particle is
rectilinear. On expanding in a wave field (or any field whose statistical average
is zero), the orbit can be represented by

Xµ(τ) = xµ
0 + uµ

0 τ +
∞∑

n=1

X(n)µ(τ), (3.1.14)

where x0, u0 are constant 4-vectors, and where X(n)(τ) is of nth order in
A(k). The 4-velocity is expanded in the same way:

uµ(τ) = uµ
0 +

∞∑
n=1

u(n)µ(τ), u(n)µ(τ) =
dX(n)µ(τ)

dτ
. (3.1.15)

In the following, x0, u0, are used as variables over which the statistical average
is performed.

3.1.4 Lagrangian density for a particle system

The Lagrangian density L(x) for a single particle is

L(x) =
∫
dτ R

(
X(τ), Ẋ(τ)

)
δ4
(
x−X(τ)

)
, (3.1.16)

where the dot denotes differentiation with respect to τ . The Lagrangian den-
sity for a system of particles is obtained by summing over all the particles.
The orbit of each particle is different due to the different initial conditions,
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which are specified by x0, u0. A statistical average is performed over these
initial conditions by introducing an appropriate distribution function.

The collection of particles is described statistically in terms of a collection
of world lines in an 8-dimensional phase space [3, 4]. The number dN of world
lines threading an element d4x0d

4p0/(2π)4dτ of a 7-dimensional surface is
given by

dNdτ =
d4x0d

4p0
(2π)4

F (x0, p0), (3.1.17)

with p0 = mu0 the initial 4-momentum. The Lagrangian density for the sys-
tem of particles becomes

LP(x) =
∫
d4x0d

4p0
(2π)4

F (x0, p0)R
(
X(τ), Ẋ(τ)

)
δ4
(
x−X(τ)

)
, (3.1.18)

where the dependence of X(τ) on x0, p0 is implicit. In (3.1.1), LP(x) is to be
interpreted as being given by (3.1.18).

3.1.5 Euler-Lagrange equations for a field

A Lagrangian formalism is applied to a field theory by identifying the inde-
pendent variable and the Lagrangian density such that the Euler-Lagrange
equations reproduce the field equations. An important restriction is that the
field be a free field. This implies that the sources of the fields are to be ne-
glected in the Lagrangian formalism. The sources are included by considering
the interactions between fields. Interaction terms allow 4-momentum to be
exchanged between the fields.

The definition of a Lagrangian for a field, Ψ(x) say, involves regarding
Ψ and its complex conjugate, Ψ∗, as independent generalized coordinates,
with ∂Ψ and ∂Ψ∗ regarded as their conjugate generalized momenta. The La-
grangian density L(Ψ, Ψ∗, ∂Ψ, ∂Ψ∗) is defined such that the action, I, is given
by

I =
∫
d4xL(Ψ, Ψ∗, ∂Ψ, ∂Ψ∗). (3.1.19)

The Euler-Lagrange equations are

∂µ
∂L

∂(∂µΨ∗)
− ∂L
∂Ψ∗ = 0, ∂µ

∂L
∂(∂µΨ)

− ∂L
∂Ψ

= 0. (3.1.20)

The Lagrangian is to be chosen such that (3.1.20) reproduce the relevant field
equations.

The energy-momentum tensor for the field is constructed from the La-
grangian by

T µν =
∂L

∂(∂µΨ∗)
∂νΨ∗ +

∂L
∂(∂µΨ)

∂νΨ − gµνL. (3.1.21)
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The field equations ensure that the energy-momentum tensor satisfies the
continuity equation

∂µT
µν = 0. (3.1.22)

This conservation law applies only for a free field. When interaction terms
are included they provide a source of 4-momentum that appears on the right
hand side of (3.1.22).

3.1.6 Lagrangian density for the electromagnetic field

For the electromagnetic field the generalized coordinates and momenta are
real and are identified as Aµ(x) and ∂Aµ(x), respectively. The Lagrangian
density for the electromagnetic field (denoted by subscript EM) is

LEM(x) = − 1
4µ0

[
∂µAν(x) − ∂νAµ(x)

][
∂µAν(x) − ∂νAµ(x)

]
. (3.1.23)

The Euler-Lagrange equation for the free electromagnetic field are

∂µ
∂

∂[∂µAν(x)]
LEM(x) = − 1

µ0
∂µ [∂µAν(x) − ∂νAµ(x)] = 0, (3.1.24)

which, as required, is Maxwell’s equation (1.2.4) for Jµ = 0. The energy-
momentum tensor implied by (3.1.21) and (3.1.23) for the electromagnetic
field is

T µν
EM(x) = − 1

µ0

[
Fµα(x)F ν

α(x) − 1
4 g

µν Fαβ(x)Fαβ(x)
]
, (3.1.25)

which is equivalent to Θµν(x) as given by (1.2.23).
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3.2 Background and wave subsystems

The Lagrangian (3.1.1) for the plasma is the sum of the Lagrangian (3.1.18)
for the free particles and the Lagrangian (3a.22) for the electromagnetic field.
In a plasma the particles and fields are coupled together and the Lagrangian
(3.1.1) needs to be split up in a different way before it can be interpreted as the
Lagrangian for a background plasma and wave subsystems. The procedure for
splitting up the system involves identifying the response tensors. Three ways
of introducing the plasma responses and rearranging (3.1.1) to take these into
account are described in this section. These are referred to as the forward-
scattering approach, the Vlasov approach and oscillation-center theory.

3.2.1 Forward-scattering approach

The idea underlying the forward-scattering method is that when the scattered
and unscattered waves are the same, all the particles in the medium contribute
in phase to forward scattering. The collective effect of all the particles scatter-
ing in phase modifies the wave, which corresponds to the collective response
of the medium. This idea is applied in the present context by expanding the 4-
current associated with a single particle in powers of the 4-potential, A(k), of
the fluctuating electromagnetic field in the plasma. This 4-current is averaged
over the statistical distribution of particles, in the same way as the average in
(3.1.18) is performed. This average gives zero except for the forward-scattering
part. The term linear in A(k) describes the linear response of the medium,
and the nonlinear terms describe the nonlinear responses.

In the forward-scattering approach, all the perturbations are included in
the orbit of the particle and the statistical average is over the initial conditions.
With this approach, one expands the orbit x = X(τ) in powers of A(k) by
solving the equation of motion, as indicated in (3.1.14). This expansion is
carried out explicitly in §3.3. The resulting explicit form for the linear response
tensor is

Πµν(k) =
∑ q2

m

∫
d4p

(2π)4
F (p) aµν(k, u), (3.2.1)

aµν(k, u) = gµν − k
µuν + kνuµ

ku
+
k2uµuν

(ku)2
. (3.2.2)

3.2.2 Vlasov approach

In the Vlasov approach the perturbations are included in the distribution
function rather than in the orbit. Thus one expands F (x, p) in powers of
A(k).

The covariant form for the Vlasov equation is(
uµ ∂

∂xµ
+
dpµ

dτ

∂

∂pµ

)
F (x, p) = 0, (3.2.3)
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with dpµ/dτ = mduµ/dτ given by (3.1.13). The expression for the 4-current
is

Jµ(x) =
∑
q

∫
d4p

(2π)4
uµ F (x, p), (3.2.4)

where the sum is over all species of particle.
The perturbation approach involves inserting (3.1.13) into the Fourier

transformed form of (3.2.3) and making the expansion

F (k, p) = F (p) (2π)4δ4(k) +
∞∑

n=1

F (n)(k, p), (3.2.5)

where F (p) is the unperturbed distribution function. The solution in a per-
turbation approach follows from

F (1)(k, p) = qGµν(k, u)Aν(k)
∂

∂pµ
F (p), (3.2.6)

F (n+1)(k, p) = q
∫
dλ(2) k1uG

µν(k1, u)Aν(k1)
∂

∂pµ
F (n)(k2, p). (3.2.7)

The nth order current is

J (n)µ(k) =
∑
q

∫
d4p

(2π)4
uµ F (n)(k, p). (3.2.8)

The nth order response is identified by equating (3.2.8) to the nth term in
the weak turbulence expansion (1.4.4).

The linear response tensor follows by writing the first order current, given
by n = 1 in (3.2.8), in the form Πµν(k)Aν(k) and identifying

Πµν(k) =
∑
q2
∫

d4p

(2π)4
uµGαν(k, u)

∂F (p)
∂pα

, (3.2.9)

which is the Vlasov form for the linear response tensor. The forms (3.2.9) and
(3.2.1) are related by a partial integration.

3.2.3 Expansion about oscillation-center coordinates

The third approach involves an expansion of the Lagrangian about oscillation-
center coordinates [5, 3]. This method leads more directly to a separation of
the Lagrangian (3.1.18) into background and wave subsystems.

Let the mean orbit of a particle be denoted by a bar. The orbit of a particle
is written in the form

Xµ(τ) = X̄µ(τ̄ ) + ξµ(τ̄ ), (3.2.10)

where xµ = X̄µ(τ̄ ) denotes the oscillation-center orbit, and where ξµ(τ̄ ) de-
notes the fluctuations about the oscillation center. In (3.2.10) the oscillation-
center proper time τ̄ is determined by
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dτ̄

dτ
=
[
1 +

2ūα

c

dξα

dτ̄
+
(
dξα
dτ̄

)(
dξα

dτ̄

)]−1/2

, (3.2.11)

where ūµ = dx̄µ/dτ̄ is the oscillation-center 4-velocity. The actual 4-velocity
is given by

uµ =
dτ̄

dτ

(
ūµ +

dξµ

dτ̄

)
. (3.2.12)

The important step in reinterpreting (3.1.1) with (3.1.18) and (3.1.23) as
the Lagrangian for background particle and wave subsystems in the medium
is to regard x̄µ = X̄µ(τ̄ ) and ūµ as the independent variables. One has

d

dτ̄
= ūµ ∂

∂x̄µ
+
dūµ

dτ̄

∂

∂ūµ
. (3.2.13)

The distribution function F̄ (x̄, ū) relative to the oscillation-center coordinates
is introduced by writing

d4xd4p

(2π)4
F (x, p) =

d4x̄ d4p̄

(2π)4
F̄ (x̄, p̄)

dτ

dτ̄
, (3.2.14)

with p̄ = mū. The action integral becomes

I =
∫
d4x̄

{∫
d4p̄

(2π)4
F̄ (x̄, p̄)

[
−mdτ

dτ̄
− q
(
ūα +

dξα

dτ̄

)
Aα(x̄+ ξ)

]

− 1
4µ0

[
∂̄µAν(x̄+ ξ) − ∂̄νAµ(x̄+ ξ)

][
∂̄µAν(x̄+ ξ) − ∂̄νAµ(x̄+ ξ)

]}
,

(3.2.15)

with ∂̄µ = ∂/∂x̄µ. The total Lagrangian (3.2.15) consists of the Lagrangian
associated with the particles plus the electromagnetic Lagrangian (3.1.23).

3.2.4 Expansion of the Lagrangian

Now let us omit the bar on x̄, ū and τ̄ , and regard (3.2.15) as defining a
new Lagrangian for the particle system. On expanding the total Lagrangian
in (3.2.15) in powers of A(k), the zeroth, first and second order terms are

L(0)(x) =
∫

d4p

(2π)4
F (x, p) [−m], (3.2.16)

L(1)(x) =
∫

d4p

(2π)4
F (x, p)

[
−muα dξα

dτ
− quαAα(x)

]
, (3.2.17)

L(2)(x) =
∫

d4p

(2π)4
F (x, p)

[
− 1

2m
(
gαβ − uαuβ

) dξα
dτ

dξβ
dτ

−q dξα
dτ
Aα(x) − quαξβ∂βAα(x)

]

− 1
4µ0

(
∂µAν(x) − ∂νAµ(x)

)(
∂µAν(x) − ∂νAµ(x)

)
, (3.2.18)
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respectively. The zeroth order term is the Lagrangian density for the back-
ground system when the effect of the waves is neglected. The first order term
(linear in ξµ) vanishes provided the 4-current in the background system is zero.
The second order term is interpreted below in terms of wave subsystems.

3.2.5 Second-order Lagrangian in k-space

For a field that satisfies 〈A(x)〉 = 0, where the angular brackets denote an
appropriate average (usually interpreted as over the phases of waves) the first
order Lagrangian (3.2.17) gives zero. The second order Lagrangian (3.2.18) is
of second order in the perturbing field, A(x), and it is convenient to write it in
terms of the Fourier transform, A(k), and its complex conjugate. Specifically,
consider L(2)(k), which is defined to satisfy∫

d4xL(2)(x) =
∫

d4k

(2π)4
L(2)(k). (3.2.19)

To lowest order in the perturbation, (3.1.13) becomes the equation of motion
(for the case F0 = 0)

d2ξµ

dτ2
=
iq

m

∫
d4k

(2π)4
e−ikx0 e−ikuτ kuGµν(k, u)Aν(k). (3.2.20)

Integrating (3.2.20) once and twice gives(
dξµ/dτ

ξµ

)
= − q

m

∫
d4k

(2π)4
e−ikx0 e−ikuτ

(
1
i/ku

)
Gµν(k, u)Aν(k).

(3.2.21)
The average may be interpreted as an average over the initial conditions, x0,
for a particle. The only terms that survive this averaging in (3.2.18) are the
terms bilinear in dξ/dτ and the final, purely electromagnetic terms that are
independent of ξ. On inserting (3.2.21) into (3.2.19) with (3.2.18) one uses
uαG

αβ(k, u) = 0 and rewrites the remaining combination in terms of the
second rank tensor

aµν(k, u) = Gα
µ(k, u)Gαν(k, u) = gµν − k

µuν + kνuµ

ku
+
k2uµuν

(ku)2
. (3.2.22)

The resulting expression may be written in terms of the tensor Λµν(k) that
appears in the wave equation (2.1.1):

L(2)(k) = − 1
2µ0

Λµν(k)A∗
µ(k)Aν(k), Λµν(k) = k2gµν − kµkν +µ0Π

µν(k),

(3.2.23)
with the response tensor identified as (3.2.1). Variation of the Lagrangian
(3.2.23) with respect to A∗(k) gives the wave equation (2.1.1), and variation
with respect to A(k) gives its hermitian conjugate.
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3.2.6 Nonlinear Lagrangian

The next order terms in the expansion (3.2.16)–(3.2.18) describe the non-
linear responses. Before considering these terms, note that the second-order
Lagrangian (3.2.23) may be written as the sum of two terms:

L(2)(k) = −
k2A∗

µ(k)Aµ(k) − |kµAν(k)|2

2µ0
− 1

2
Πµν(k)A∗

µ(k)Aν(k), (3.2.24)

where (2.1.2) is used. The first term is the Lagrangian for the electromagnetic
field in this notation, and the second term is − 1

2J
µ
ind(k)A∗

µ(k), where Jµ
ind(k) is

the linear induced 4-current. Variation of the Lagrangian L(2)(k) with respect
to A∗

µ(k) gives the homogeneous wave equation, with the factor 1/2 in (3.2.24)
being canceled by a factor of 2 due to L(2)(k) being a homogeneous quadratic
form in A(k). The Lagrangian may be generalized to include the nonlinear
responses, which appear in the weak turbulence expansion (1.4.4). The term
L(n)(k) is of nth order in A(k), and differentiating with respect to A(k) it gives
(minus) the (n−1)th order nonlinear current. The nth order Lagrangian gives
a contribution to the action of the form (3.2.19), specifically,∫

d4xL(n+1)(x) =
∫

d4k

(2π)4
L(n+1)(k). (3.2.25)

For n = 2, the Lagrangian is

L(3)(k) = −1
3

∫
dλ(2)Πµνρ(−k, k1, k2)A∗

µ(k)Aν(k1)Aρ(k3), (3.2.26)

which describes quadratic nonlinear effects. The contribution to the action
may be written in the symmetric form∫

d4k

(2π)4
L(3)(k) = −1

3

∫
d4k0
(2π)4

d4k1
(2π)4

d4k2
(2π)4

(2π)4δ4(k0 + k1 + k2)

×Πµνρ(k0, k1, k2)Aµ(k0)Aν(k1)Aρ(k3). (3.2.27)

The analogous contribution to the action for the cubic response, n = 3, is∫
d4k

(2π)4
L(4)(k) = −1

4

∫
d4k0
(2π)4

d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

×(2π)4δ4(k0 + k1 + k2 + k3)Πµνρσ(k0, k1, k2, k3)Aµ(k0)Aν(k1)Aρ(k2)Aσ(k3),
(3.2.28)

and so on for the higher order responses.
The nonlinear response tensors are calculated using the oscillating-center

method by carrying out the expansion of the Lagrangian (3.2.15) to the rele-
vant order. The resulting expressions for the response tensor are identical to
those calculated using the forward-scattering method used in §3.3.
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3.2.7 Ponderomotive force

A slow variation in the space-time distribution of waves in a medium causes a
local pressure-like force on the medium, called the ponderomotive force. The
waves affect the particles in bulk through this ponderomotive force. A covari-
ant description of the ponderomotive force involves the energy-momentum
4-tensor for the background distribution. However, there is some arbitrariness
in how one makes the separation into wave and background subsystems, and
the choice made affects the identification of the ponderomotive force. The
separation assumed here is the canonical separation of Dewar [3, 6, 7, 8], cor-
responding to the Minkowski form of the energy-momentum tensor for the
waves.

The energy-momentum tensor for the background system (subscript b)
gives

T µν
b (x) =

∫
d4p

(2π)4
F (x, p)(uµpν

c + gµνR) − gµνLb(x), (3.2.29)

where Lb(x) is the Lagrangian for the background subsystem, with the canon-
ical momentum, pc, given by

pµ
c = −

(
gµν − uµuν

) ∂R
∂uν

− uµR, (3.2.30)

The ponderomotive 4-force density fµ
b (x) satisfies

∂µT
µν
b (x) = fν

b (x), (3.2.31)

and is identified by evaluating T µν
b (x) for a wave field.

In the absence of slow variations in a wave field, its 4-potential, Aµ(x),
for a wave field may be represented in terms of its Fourier transform: the
form (2.4.1) includes an amplitude aM (k), the polarization vector, eµM (k),
and the phase factor exp(−ikx). On including variations on a slow-long scale,
each of these factors is allowed to be a slowly varying function of x, with the
phase factor replaced by exp[iΦ(x)], where Φ(x) is the eikonal with kµ(x) =
−∂µΦ(x). For quasi-monochromatic waves in an unlabeled mode, a simple
model that suffices for present purposes is

Aµ(x) = aµ(x, k) eiΦ(x) + c.c., (3.2.32)

where aµ(x, k) is the slowly-varying amplitude. The ponderomotive force den-
sity may be separated into two parts:

fµ
b (x) = ∂αT

αµ
Q (x) + fµ

L(x), (3.2.33)

where T µν
Q (x) is the energy-momentum tensor for the quiver motion associated

with the waves and where fµ
L(x) is the Lorentz force density. The quiver
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motion appears as a second order term (q2/m)aµν(k, u)AµAν in the single-
particle Lagrangian, R, and after averaging over the phase this gives

T µν
Q (x) = −q

2

m

∫
d4p

(2π)4
F (x, p)

[
Gµα(k, u)Gνβ(k, u) +Gµβ(k, u)Gνα(k, u)

−uµuνaαβ(k, u)
]
aα(x, k) a∗β(x, k). (3.2.34)

The two forces may be written entirely in terms of the wave field and its
derivatives:

fµ
b (x) = − 1

2µ0
∂µ[Fαβ(x)F ∗

αβ(x)], (3.2.35)

fµ
L(x) = − 1

2µ0
∂µ[Fαβ(x)F ∗

αβ(x)]

+
1
µ0
∂ν [Fµβ(x)F ∗

νβ(x) + F ∗µβ(x)Fνβ(x)], (3.2.36)

with Fµν = ∂µaν(k, x) − ∂νaµ(k, x). The corresponding 3-force densities are

f b = −grad (ε0|E|2 − |B|2/µ0), (3.2.37)

fL = −
[
grad (ε0|E|2 + |B|2/µ0) + ∇ ·

(
ε0EE∗ + BB∗/µ0 + c.c.

)
− ∂
∂t

(
E × B∗/µ0 + c.c.

)]
, (3.2.38)

where E and B are the wave fields.
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3.3 Forward-scattering method

In the forward-scattering method, the response of the medium is found
by summing the forward-scattering amplitude over all the particles in the
medium.

3.3.1 Single particle current

The 4-current density due to a single particle with charge q and orbit x = X(τ)
is

Jµ
sp(x) = q

∫
dτ uµ(τ) δ4

(
x−X(τ)

)
. (3.3.1)

After Fourier transforming, this becomes

Jµ
sp(k) = q

∫
dτ uµ(τ)eikX(τ). (3.3.2)

A formal expansion of the orbit in powers of A(k) leads to an expansion of
the current in powers of A(k), cf. (3.1.14) and (3.1.15),

Xµ(τ) = Xµ
0 (τ) +

∞∑
n=1

X(n)µ(τ), (3.3.3)

where x = X0(τ) is the unperturbed orbit. The first few terms in the expansion
of (3.3.2) are

J (0)µ
sp (k) = q

∫
dτ u(0)µ(τ) eikX(0)(τ), (3.3.4)

J (1)µ
sp (k) = q

∫
dτ
[
u(1)µ(τ) + ikX(1)(τ)u(0)µ(τ)

]
eikX(0)(τ), (3.3.5)

J (2)µ
sp (k) = q

∫
dτ
{
u(2)µ(τ) + ikX(1)(τ)u(1)µ(τ)

+
[
− 1

2

(
kX(1)(τ)

)2 + ikX(2)(τ)
]
u(0)µ(τ)

}
eikX(0)(τ), (3.3.6)

and so on.

3.3.2 Perturbation expansion for an unmagnetized plasma

In the absence of any static field, the unperturbed motion of the particle is rec-
tilinear, X(0)µ(τ) = xµ

0 + uµ
0 τ , with x0, u0 constant 4-vectors. A perturbation

expansion of the equation of motion (3.1.13) leads to
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d

dτ
u(1)µ(τ) =

iq

m

∫
d4k′

(2π)4
e−ik′(x0+u0τ) k′u0G

µν(k′, u0)Aν(k′), (3.3.7)

d

dτ
u(2)µ(τ) =

iq

m

∫
d4k′

(2π)4
e−ik′(x0+u0τ)

[
−ik′X(1)(τ) + u(1)(τ)

∂

∂u0

]
k′u0G

µν(k′, u0)Aν(k′), (3.3.8)

and so on. The first order perturbations in the 4-velocity and in the orbit
follow by integrating (3.3.7) once and twice, respectively. The second order
perturbations follow in a similar manner from (3.3.8). Inserting the resulting
expressions into (3.3.2), the expansion of the current gives

J (0)µ
sp (k) = quµ

0

∫
dτ eik(x0+u0τ) = quµ

0e
ikx0 2πδ(ku0), (3.3.9)

J (1)µ
sp (k) = q

∫
dτ eik(x0+u0τ) [u(1)µ(τ) + ikX(1)(τ)uµ

0 ], (3.3.10)

and so on. Quite generally, the nth order current is written in the form

J (n)µ
sp (k) =

∫
d4k1
(2π)4

· · ·
∫
d4kn

(2π)4
β(n)µν1...νn(k, k1, . . . , kn, u)

×Aν1(k1) . . . Aνn(kn)ei(k−k1−···−kn)x0 2πδ[(k − k1 − · · · − kn)u], (3.3.11)

which defines the quantities β(n)µν1...νn(k, k1, . . . , kn, u), and where now the
subscript 0 on uµ

0 is omitted. One is free to impose the requirement that
β(n)µν1...νn(k, k1, . . . , kn, u) be completely symmetric under permutations of
the labels 1 to n.

Detailed evaluation gives

β(0)µ(k, u) = quµ, (3.3.12)

β(1)µν(k, k1, u) = −q
2

m
aµν(k, k1, u), (3.3.13)

aµν(k, k1, u) = gµν − k
νuµ

ku
− k

ν
1u

µ

k1u
+
kk1 u

µuν

ku k1u
, (3.3.14)

β(2)µνρ(k, k1, k2, u) = − q3

2m2

[
aµν(k, k1, u)

(k − k1)αG
αρ(k2, u)

k2u

+aµρ(k, k2, u)
(k − k2)αG

αν(k1, u)
k1u

+ aνρ(k1, k2, u)
(k1 + k2)αG

αµ(k, u)
ku

]
,

(3.3.15)
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β(3)µνρσ(k, k1, k2, k3, u)

= − q4

6m3

[
(k − k1)(k2 + k3)

(k2u+ k3u)2
aµν(k, k1, u)aρσ(k1, k2, u)

+
aµν(k, k1, u)
k2u+ k3u

{
(k − k1 − k3)α(k − k1)β

k2u

+
(k − k1 − k2)β(k − k1)α

k3u

}
Gαρ(k2, u)Gβσ(k3, u)

+
aρσ(k2, k3, u)
ku− k1u

{
(k1 + k2 + k3)α(k2 + k3)β

ku

+
(k − k2 − k3)β(k2 + k3)α

k1u

}
Gαµ(k, u)Gβν(k1, u)

+(ν, k1) ↔ (ρ, k2) + (ν, k1) ↔ (σ, k3)
]
, (3.3.16)

where (ν, k1) ↔ (ρ, k2) indicates an additional three terms obtained from the
three terms shown by making the interchanges indicated, and (ν, k1) ↔ (σ, k3)
indicates a further three terms.

3.3.3 Forward-scattering assumption

The sum over all the particles of the nth order single-particle current (3.3.11)
is achieved by operating on (3.3.11) with

∫
[d4x0d

4p0/(2π)4]F (p0). In (3.3.11),
x0 appears only in a phase factor, and the integral over x0 is trivial;∫

d4x0 e
i(k−k1−···−kn)x0 = (2π)4δ4(k − k1 − · · · − kn). (3.3.17)

The requirement that the wave 4-vectors satisfy the condition implied by the
δ-function in (3.3.17) is the forward-scattering condition. It expresses the fact
that the currents from the individual particles have a nonzero average only
when they are independent of the initial conditions, x0.

The δ-function in (3.3.17) is incorporated into the n-fold convolution in-
tegral (1.3.6) that appears in the nth order response in the weak-turbulence
expansion (1.4.4). Thus one identifies the contribution of one species of par-
ticle to the nth order nonlinear response tensor as

Π(n)µν1...νn(−k, k1, . . . , kn) =
∫

d4p

(2π)4
F (p)β(n)µν1...νn(k, k1, . . . , kn, u),

(3.3.18)
where the negative sign in the argument −k is required to be consistent with
the convention in (1.4.4) that the sum of the arguments of the nonlinear
response tensor be zero. For the linear response, inserting (3.3.13) in (3.3.11)
and averaging over the distribution of particles using (3.3.17) leads to the
expression (3.2.1) for the linear response tensor.
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3.4 Cold plasma model

The simplest description of a plasma as a collective medium is in terms of
fluid theory. A fluid description is appropriate in the cold plasma limit, when
the thermal motions or other random motions of the particles are neglected.

3.4.1 Covariant fluid equations

The fluid equations consist of the continuity equation for the fluid,

∂µ [npr(x)uµ(x)] = 0. (3.4.1)

where npr(x) is the proper number density and uµ(x) is the fluid 4-velocity,
and the equation of fluid motion,

uα(x)∂αu
µ(x) =

q

m

[
Fµν

0 + ∂µAν(x) − ∂νAµ(x)
]
uν(x), (3.4.2)

where the contributions of a static field Fµν
0 and of a fluctuating field

∂µAν(x) − ∂νAµ(x) are included separately. The operator uα(x)∂α in (3.4.2)
is interpreted as the total derivative ∂/∂τ(x), where τ(x) is the proper time
along the flow lines.

The Fourier transformed form of the continuity equation (3.4.1) is∫
dλ(2) npr(k1) kαuα(k2) = 0, (3.4.3)

where the convolution integral is defined by (1.3.7). The Fourier transform of
the equation of fluid motion (3.4.2) is∫

dλ(2) uα(k1)kα
2 u

µ(k2) = i
q

m
Fµν

0 uν(k)

− q
m

∫
dλ(2) ku(k)Gµν

(
k1, u(k2)

)
Aν(k1), (3.4.4)

with Gµν(k, u) = gµν − kµuν/ku. The 4-current is given by

Jµ(k) = q
∫
dλ(2) npr(k1)uµ(k2), (3.4.5)

with one such contribution for each species of particle.

3.4.2 Perturbation expansion of the fluid equations

An expansion in powers of A(k) is of the form
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npr(k) = n(0)
pr (2π)4 δ4(k) +

∞∑
n=1

n(n)
pr (k), (3.4.6)

uµ(k) = u(0)µ(2π)4 δ4(k) +
∞∑

n=1

u(n)µ(k), (3.4.7)

Jµ(k) = J (0)µ(2π)4 δ4(k) +
∞∑

n=1

J (n)µ(k). (3.4.8)

For a cold plasma, the unperturbed proper number density, n(0)
pr , is identified

as the number density, n, in the rest frame of the plasma. (This is correct only
when thermal motions are neglected.) On substituting (3.4.6) and (3.4.7) into
(3.4.5) and collecting terms, comparison with (3.4.8) leads to the following
expression for the nth order current:

J (n)µ(k) =
∑
q

∫
dλ(2)

n∑
m=1

n(m)
pr (k1)u(n−m)µ(k2). (3.4.9)

The expansion of the equation of continuity (3.4.3) gives

ku(0) n(1)
pr (k) = −n(0)

pr ku
(1)(k),

ku(0) n(2)
pr (k) = −n(0)

pr ku
(2)(k) −

∫
dλ(2) n(1)

pr (k1)kα
2 u

(1)
α (k2),

ku(0) n(n)
pr (k) = −n(0)

pr ku
(n)(k) −

n∑
m=1

∫
dλ(2) n(m)

pr (k1)kα
2 u

(n−m)
α (k2).

(3.4.10)

In the unmagnetized case, F0 = 0, using the identity

∂

∂uα
[Gµν(k, u)] = kαGµν(k, u) − kµGαν(k, u), (3.4.11)

the expansion of the equation of fluid motion (3.4.4) gives

u(1)µ(k) = − q
m
Gµν(k, u)Aν(k),

ku(0) u(2)µ(k) = −
∫
dλ(2) u(1)

α (k1)kα
2 u

(1)µ(k2)

− q
m

∫
dλ(2) u(1)

α (k2)
[
kα
1G

µν(k1, u) − kµ
1G

αν(k1, u)
]
Aν(k1),

ku(0) u(n)µ(k) = −
∫
dλ(2) u(m)

α (k1)kα
2 u

(n−m)µ(k2)

− q
m

∫
dλ(2) u(1)

α (k2)
[
kα
1G

µν(k1, u) − kµ
1G

αν(k1, u)
]
Aν(k1).

(3.4.12)
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3.4.3 First and second order currents

The zeroth order or static current is J (0)µ = qn
(0)
pr u(0)µ. Formally the static

current must be zero in a plasma with no external field; this is because a
nonzero current would generate a static field contrary to the assumption that
there is no such field.

The solutions for the first order quantities u(1)µ(k) and n(1)
pr (k) are

n(1)
pr (k) = −npr

ku
ku(1)(k), u(1)µ(k) = − q

m
Gµν(k, u)Aν(k), (3.4.13)

where the superscripts (0) are now omitted. The second order density fluctu-
ation follows directly from (3.4.10):

n(2)
pr (k) = −npr

ku

[
ku(2)(k) −

∫
dλ(2) 1

k1u
kα
1 u

(1)
α (k1) k

β
2 u

(1)
β (k2)

]
. (3.4.14)

The solutions of (3.4.12) for the second order 4-velocity fluctuation u(2)µ(k)
is symmetrized over k1 and k2, giving

u(2)µ(k) = − q2

2m2
kµ

∫
dλ(2)Gαν(k1, u)Gα

ρ(k2, u)Aν(k1)Aρ(k2), (3.4.15)

where k = k1 + k2 is used after symmetrizing.

3.4.4 Response tensors for a cold unmagnetized plasma

The response tensors for a cold plasma are identified from the expansion
(3.4.9) of the current.

The linear response tensor follows from the linear term in (3.4.9) with
n

(1)
pr (k) and u(1)µ(k) given by (3.4.13). On writing J (1)µ(k) = Πµν(k)Aν(k),

one finds

Πµν(k) = −q
2npr

m
aµν(k, u), (3.4.16)

with npr = n identified as the number density in the rest frame, and with
aµν(k, u) defined by (3.2.2).

The quadratic and cubic response tensors are identified from the second
and third order terms, respectively, in the expansion (3.4.9) of the current,
together with the n = 1, n = 2 and n = 3 terms for the proper density
and the 4-velocity. When using the cold plasma approach to calculate the
nonlinear response tensors, it is important to impose the symmetry property
(1.4.7) explicitly, because otherwise the result depends on the details of the
calculation. The method gives

Π(2)µνρ(k0, k1, k2) = − q
3n

2m2

[
aµν(k0, k1, ũ)

k2αG
αρ(k2, ũ)
k2ũ
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+aµρ(k0, k2, ũ)
k1αG

αν(k1, ũ)
k1ũ

+ aνρ(k1, k2, ũ)
k0αG

αµ(k0, ũ)
k0ũ

]
, (3.4.17)

Π(3)µνρσ(k0, k1, k2, k3)

= − q
4n

6m3

[
(k2 + k3)2

(k2u+ k3u)2
aµν(k0, k1, ũ)aρσ(k1, k2, ũ)

+
aµν(k0, k1, ũ)
k2ũ+ k3ũ

{
k2α(k2 + k3)β

k2ũ
+
k3β(k2 + k3)α

k3ũ

}
Gαρ(k2, ũ)Gβσ(k3, ũ)

+
aρσ(k2, k3, ũ)
k0ũ+ k1ũ

{
k0α(k0 + k1)β

k0ũ
+
k1β(k0 + k1)α

k1ũ

}
Gαµ(k0, ũ)Gβν(k1, ũ)

+(ν, k1) → (ρ, k2) + (ν, k1) → (σ, k3)
]
, (3.4.18)

for the quadratic and cubic response tensors, respectively. The final line in
(3.4.18) indicates additional terms that are obtained from those written by
making the indicated replacements.

The cold plasma method for an unmagnetized plasma may be used to
derive completely general expressions for the linear and nonlinear response
tensors. One regards the plasma as consisting of a collection of cold plasma
components each confined to an elements d4p/(2π)4 of 4-momentum. On re-
placing npr in the expressions for the response tensors by [d4p/(2π)4]F (p), and
summing over the collection of cold plasmas by integrating over d4p/(2π)4, one
rederives the general results. For example, this corresponds to replacing n by
[d4p/(2π)4]F (p) in (3.4.16) and integrating, reproducing the expression (3.2.1)
obtained using the forward-scattering methods, respectively. The method may
also be applied to the nonlinear response tensors. In this sense, the cold plasma
method is equivalent to the oscillation-center, forward-scattering and Vlasov
approaches for calculating the response tensors. However, this is the case only
for an unmagnetized plasma, and for a magnetized plasma the cold plasma
method is less general than the other methods.
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3.5 Covariant Vlasov theory

The conventional statistical theory of collisionless plasmas is based on the
Vlasov equation. The particles of any given species are described by their dis-
tribution function, f(t,x,p), which is the density in 6-dimensional x-p phase
space. In a covariant treatment the particles are described by the distribu-
tion F (x, p) in 8-dimensional x-p phase space. Vlasov theory is introduced
in this section using the covariant formalism. The Vlasov approach and the
forward-scattering approach complement each other. In particular, the Vlasov
approach is the basis for the treatment of fluctuations in a plasma, as discussed
briefly at the end of this section.

3.5.1 Statistical theory of plasmas

The statistical theory of plasma is superficially similar to the kinetic theory of
gases, but contains subtleties associated with the nature and role of collisions.
In a gas the forces between particles are short range, and a binary ‘collision’
occurs when two particle are close enough for the force between them to affect
their motion significantly. Tertiary and higher order collisions, when three or
more particles interact simultaneously, are included using a cluster expansion,
which is a form of perturbation expansion. However, charged particles interact
through the electromagnetic field, and this expansion in binary, tertiary, etc.,
collisions does not converge. For example, consider a test charge at rest in the
plasma. Its Coulomb field falls off with radial distance as 1/r2. However,
the number of particles within a sphere of radius r increases as r2, so that
the collective effect of the Coulomb interaction with other charges does not
decrease with increasing r. To overcome this complication, the concept of the
self-consistent field is introduced.

The classical statistical distribution of a system of N particles is based on
the 6N -dimensional phase space consisting of the N positions andN momenta
of the particles. One imagines an ensemble of systems in which the initial
conditions for the motions of the particles are chosen randomly (according
to some statistical rule that depends on the ensemble), with each system in
the ensemble described by a point in the phase space. The density of these
representative points in the phase space describes the ensemble. The motion
of the individual particles causes each of these representative points to move
along a trajectory in the phase space. Liouville’s theorem is that the density
of representative points is a constant along such a trajectory.

For a system of ‘collisionless’ particles, the trajectories are determined by
external forces and the forces between particles are ignored. For N identical
particles, the 6N dimensional phase space is equivalent to the outer prod-
uct of N identical 6-dimensional phase spaces, and the distribution function
is the produce on N identical single-particle distributions in a 6-dimensional
phase space. Liouville’s theorem reduces to the collisionless Boltzmann equa-
tion in the 6-dimensional phase space. In the kinetic theory of gases, the
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effects of collisions are included through a collision term that is added to
the right hand side of the collisionless Boltzmann equation, and that may
be evaluated systematically through the cluster expansion. Formally, if one
writes an element of the N dimensional phase space as a product over the
N 6-dimenisional elements, dΓi = d3xid

3pi/(2π)
3 with i = 1, · · · , N , the

single-particle distribution is identified by integrating the total distribution
over i = 2, · · · , N , the two-particle distribution by integrating the total dis-
tribution over i = 3, · · · , N , and so on. Here we are concerned only with the
leading term in this hierarchy.

The important step in generalizing the collisionless Boltzmann equation
to the Vlasov equation is to re-interpret the electromagnetic field as the self-
consistent field. In the Boltzmann equation any force is assumed to be ex-
ternal, and this applies to the electromagnetic field, so that the Boltzmann
equation is a linear partial differential equation for the distribution function.
The self-consistent field is determined by the charge and current densities in
the plasma, which are themselves determined by the distributions of parti-
cles. As a result, the Vlasov equation, although superficially the same as the
collisionless Boltzmann equation, is intrinsically nonlinear due to the fields
depending on the distribution functions through the charge and current den-
sities.

3.5.2 Boltzmann equation

The distribution function, f(t,x,p), in 6-dimensional x-p phase space is
normalized such that the integral over dΓ f(t,x,p) over all phase space
is equal to unity, with dΓ = d3xd3p/(2π)3. (In ordinary units one has
dΓ = d3xd3p/(2πh̄)3: the factor (2πh̄)3 arises naturally in quantum statisti-
cal mechanics.) The factor (2π)3 is often omitted in classical theory, but it is
retained here.

The collisionless Boltzmann equation is(
∂

∂t
+ v · ∂

∂x
+ F · ∂

∂p

)
f(t,x,p) = 0, (3.5.1)

where F is the force operating on the particle. When the only force acting is
the electromagnetic force, on particles with charge q, one has

F =
dp

dt
= q[E(t,x) + v × B(t,x)], (3.5.2)

One may solve the equation of motion, dp/dt = F to find the momentum,
p = p(t) and a function of time, hence find v(t) = p(t)/γ(t), with γ(t) =
(m2 + |p(t)|2)1/2/m, and hence find the orbit x = x(t). The solutions for
x(t) and p(t) depend implicitly on initial conditions, which are different for
different particles. An exact expression for the distribution function is

f(t,x,p) =
∑

(2π)3δ3[x − x(t)] δ3[p − p(t)], (3.5.3)
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where the sum is over all N particles. With the form (3.5.3), the Boltzmann
equation (3.5.1) is satisfied trivially. A statistical distribution is defined by
averaging over the initial conditions, implicit in (3.5.3), according to some
microscopic prescription.

The Boltzmann equation is derived under the assumption that the particles
move in a prescribed force field, that is, in a prescribed electromagnetic field
in the present case. The Vlasov equation has the same form as (3.5.1), but
with the fields interpreted as including the self-consistent, found by solving
Maxwell’s equations with the charge and current densities determined by the
distribution functions. A single distribution gives

ρ(t,x) = q
∫

d3p

(2π)3
f(t,x,p), J(t,x) = q

∫
d3p

(2π)3
v f(t,x,p), (3.5.4)

with the total charge and current densities given by summing over the con-
tributions from all species. With this reinterpretation, (3.5.1) changes from
a linear partial differential equation to an nonlinear integro-differential equa-
tion.

The foregoing theory is relativistically correct, and f(t,x,p) is a Lorentz
invariant. However, the theory is not in covariant form.

3.5.3 Boltzmann equation in 8-dimensional phase space

An equivalent description ot the distribution of N particles is given by the
distribution F (x, p) in 8-dimensional phase space, as introduced in (3.1.17)
which is written here simply as

dNdτ =
d4xd4p

(2π)4
F (x, p). (3.5.5)

(In ordinary units, replace the factor (2π)4 by (2πh̄)4.) The relation between
F (x, p) and f(t,x,p) is determined by equating the number of particles, dN ,
in the two different formalisms. In the 6-dimensional formalism one has

dN =
d3xd3p

(2π)3
f(t,x,p), (3.5.6)

Comparison with (3.5.5) with d4xd4p = dx0dp0d3xd3p, and dx0 = dt = γdτ
and p0 = ε = γm requires dp0 F (x, p) = f(t,x,p)/γ. The particles must be on
their mass shell, corresponding to p2 = (p0)2−|p|2 = m2, and this is included
by requiring F (x, p) ∝ δ(p2 −m2). The required relation follows:

F (x, p) = 4πmδ(p2 −m2) f(t,x,p). (3.5.7)

Note that F (x, p), δ(p2 −m2) and f(t,x,p) are all invariants.
The counterpart of the Boltzmann equation (3.5.1) is
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uα∂α + Fα(x, p)

∂

∂pα

)
F (x, p) = 0. (3.5.8)

The derivative with respect to pα operates on the δ-function in (3.5.8), but
gives identically zero due to

Fαpα = 0, (3.5.9)

which follows directly from the definition (3.1.11) of the 4-force. The identify
(3.5.9) allows one to move the factor δ(p2 −m2) to the left of the derivative
with respect to pα. Only the space components of the derivative with respect
to pα act on f(t,x,p), which is regarded as a function of p but not of p0.
Alternatively, for example in a isotropic medium, one may regard f as a
function of p0, rather than of p, and only the 0-component of the derivative
with respect to pα acts on f .

The use of F (x, p) rather than f(t,x,p) involves only a change in notation,
with no change in physical content. For example, the counterparts of (3.5.3),
(3.5.4) are

F (x, p) =
∑∫

dτ (2π)4δ4[x−X(t)] δ4[p− p(t)], (3.5.10)

Jµ(x) = q
∫
d4xd4p

(2π)4
pµ

m
F (x, p), (3.5.11)

respectively. The reinterpretation of the Boltzmann equation as the Vlasov
equation is unchanged by this change in notation.

3.5.4 Fluctuations in a plasma

Vlasov theory is useful in describing fluctuations in a plasma. In a steady state
the fluctuations in various quantities are described in terms of autocorrelation
and cross-correlation functions. Let the correlation function of two quantities,
Q1(x) and Q2(x), be

〈Q1(x)Q2(x′)〉 = 〈Q1Q2〉(x− x′), (3.5.12)

where the average, denoted by angular brackets, is over space-time (specifically
over 1

2 (x+ x′)), over the initial conditions, or over an ensemble. The average
of the Fourier transform of the quantities is related to the Fourier transform
of their correlation function by

〈Q1(k)Q2(k′)〉 = 〈Q1Q2〉(k) (2π)4δ4(k + k′),

〈Q1(k)Q∗
2(k

′)〉 = 〈Q1Q
∗
2〉(k) (2π)4 δ4(k − k′). (3.5.13)

where the second form follows from the first due to the reality condition
Q2(k′) = Q∗

2(−k′).
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The fluctuations in the electromagnetic field in a plasma are described by
the the correlation function:

〈Aµ(k)A∗ν(k′)〉 = (2π)4 δ4(k − k′) 〈AA∗〉µν(k). (3.5.14)

Ignoring dissipation, the correlation function must be determined uniquely by
the distribution of particles. The fluctuations associated with waves in the
mode M follow by identifying the 4-potential with that associated with waves
in the mode M , as given by (2.4.2). One finds

〈AA∗〉µν
M (k) =

RM (k)NM (k)
ε0ωM (k)

[
eµM (k)e∗ν

M (k) 2π δ(ω − ωM )

+e∗µ
M (k)eνM (k) 2π δ(ω + ωM )

]
, (3.5.15)

where (2.4.10) is used.

3.5.5 Two-scale separation of the distribution function

In describing fluctuations and other processes in plasmas, it is often important
to separate two scales: a fast-short scale and a slow-long scale. These scales
are not necessarily well defined, with their definition depending partly on the
context and on the application. The important distinction is that one Fourier
transforms (in time and/or space) for disturbances on the fast-short scale and
one regards changes on the slow-long scale as secular. The separation into
two scales may be achieved by writing the exact distribution function (3.5.10)
as the sum of two terms, F = F̄ + δF , with F̄ averaged over the fast-short
scale and varying only on the slow-long scale, and with δF including all the
fluctuations on the fast-short scale.

The Vlasov equation (3.5.8) separates into equations for the fast-short
and slow-long scales as follows. Average over the fast-short scale to find the
evolution on the slow-long scale, and subtract this average from (3.5.8) to
find the evolution on the fast-short scale. For the slow-long variation, writing
uα∂αF̄ (p) → dF̄ (p)/dτ , this gives

dF̄ (p)
dτ

= −
〈
Fα(x, p)

∂

∂pα
δF (x, p)

〉
, (3.5.16)

where Fα(x, p) is assumed to involve only the fluctuating electromagnetic
4-force. For the fast-short variations one has

uα∂αδF (x, p) + Fα(x, p)
∂F̄ (p)
∂pα

= 0, (3.5.17)

where a contribution

Fα(x, p)
∂

∂pα
δF (x, p) −

〈
Fα(x, p)

∂

∂pα
δF (x, p)

〉
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is neglected.
On Fourier transforming on this scale (3.5.17) gives

−iku δF (k, p) + Fα(k, p)
∂

∂pα
F̄ (p) = 0. (3.5.18)

The procedure is to find an appropriate solution of (3.5.18) for δF (k, p), to
express the right hand side of (3.5.16) in terms of Fourier transforms, insert
the solution for δF (k, p) and carry out the appropriate average.

3.5.6 Fluctuations for undressed particles

In describing correlations in a plasma one relates the fluctuations in δF to the
fluctuations in the electromagnetic field. However, even in the absence of the
electromagnetic field the autocorrelation function, 〈δF (x, p) δF (x′, p′)〉, for
the fluctuating part of the distribution function is nonzero. This correlation
is due to random fluctuations in the number of particles in a particular region
of phase space. Random fluctuations, δN , about a mean N̄ have a correlation
function 〈(δN)2〉 = N̄ , suggesting that 〈δF (x, p) δF (x′, p′)〉 should be propor-
tional to F̄ . This correlation is the zeroth order in an expansion in powers of
the electromagnetic field, and it is appropriate to denote this ‘undressed’ ap-
proximation with a subscript ‘ud’. The correlation function, in Fourier space,
that describes this is 〈δFud(k, p) δFud(k′, p′)〉. This correlation function is in-
terpreted as an average over the slow-long scale, and particles with different
4-momenta give fluctuations that average to zero on this scale. This implies
that the correlation function is proportional to δ4(k + k′) δ4(p − p′) F̄ (p). In
the absence of the electromagnetic field, δFud(k, p) satisfies (3.5.18) with the
right hand side set to zero, that is

ku δFud(k, p) = 0. (3.5.19)

This requires δFud(k, p) = 0 except for ku = 0, implying that the correla-
tion function is proportional to δ(ku). The actual form for the correlation
correlation function is

〈δFud(k, p) δFud(k′, p′)〉 = 2πδ(ku) (2π)4δ4(k + k′) (2π)4δ4(p− p′) F̄ (p).
(3.5.20)

Note that the correlation function applies when the particles are uncorre-
lated, in the sense that the two-particle distribution is the outer product of
two identical one-particle distribution functions. This correlation function de-
scribes fluctuations that are purely statistical.

3.5.7 Fluctuations in the current

The fluctuating current associated with the fluctuations in the distribution
function for particles of a particular species is given by
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δJµ(k) = q
∫

d4p

(2π)4
uµ δFud(k, p). (3.5.21)

The correlation function for the current is

〈δJµ(k) δJ∗ν(k′)〉 = (2π)4 δ4(k − k′) 〈δJ δJ∗〉µν(k). (3.5.22)

Then (3.5.20), (3.5.21) and (3.5.22) imply

〈δJ δJ∗〉µν(k) = q2
∫

d4p

(2π)4
uµuν 2πδ(ku) F̄ (p). (3.5.23)

The correlation function (3.5.23) described the statistical average of the cur-
rent fluctuations associated with the random motions of unscreened particles
of a particular species.

3.5.8 Fluctuations in the electromagnetic field

The fluctuations in the 4-potential are determined by the fluctuations in the
4-current through the solution (2.1.4) of the wave equation. One has

〈AA∗〉µν(k) = Dµρ(k)D∗νσ(k) 〈δJ δJ∗〉ρσ(k), (3.5.24)

where Dµν(k) is the Green’s function or photon propagator.
In an isotropic plasma, the photon propagator separates into longitudinal

and transverse parts, cf. (2.5.1). Using this separation, the longitudinal and
transverse parts of 〈AA∗〉µν(k) are identified as

〈AA∗〉L(k) =
k4

(kũ)4
|DL(k)|2〈δJ δJ∗〉L(k),

〈AA∗〉T (k) = |DT (k)|2〈δJ δJ∗〉T (k), (3.5.25)

respectively. In an isotropic plasma, this separation applies to all fluctuations,
including waves and the fluctuations associated with the screening fields.
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3.6 Lagrangian description of a wave subsystem

A wave subsystem may be defined by identifying its Lagrangian. Let the
Lagrangian for waves in the modeM be LM (k). In this section, the properties
of the wave subsystem, including its energy-momentum tensor, are derived
from LM (k) using a covariant generalization of a formalism due to Whitham
[9, 10]. In Whitham’s approach, the wave Lagrangian is formally regarded as a
function of three generalized coordinates and their conjugate momenta. These
are the wave amplitude, its complex conjugate and the phase of the wave. The
form of the Lagrangian is to be chosen such that the Euler-Lagrange equation
for the amplitude, or rather for its complex conjugate, give the wave equation.

3.6.1 Lagrangian density a wave subsystem

The wave Lagrangian is identified by separating the second order Lagrangian
(3.2.23) into contributions from each of the natural wave modes. Starting from
(3.2.23),

L(2)(k) = − 1
2µ0

Λµν(k)A∗
µ(k)Aν(k), (3.6.1)

with A(k) identified as the 4-potential for waves in the mode M (2.4.2), viz.

Aµ
M (k) = aM (k)

[
eµM (k) (2π)4 δ4(k − kM ) + e∗µ

M (k) (2π)4 δ4(k + kM )
]
, (3.6.2)

the wave Lagrangian for the mode M reduces to

LM (k) = − 1
µ0
a∗Mµ(k)aMν(k)ΛHµν(kM ), (3.6.3)

aµ
M (k) = eµM (k)aM (k), aM (k) =

[
RM (k)NM (k)
V ε0ωM (k)

]1/2

. (3.6.4)

The wave equation (2.1.3) implies e∗Mµ(k)eMν(k)ΛHµν(kM ) = 0, and hence
that the wave Lagrangian (3.6.3) is numerically equal to zero. However, the
importance of (3.6.3) is in its functional dependence rather than its numer-
ical value. The wave Lagrangian (3.6.1) is regarded as a function of the two
generalized coordinates, aµ

M and its complex conjugate, and of kµ
M which is

defined as the derivative of the phase (or eikonal) ΨM of the wave:

∂µΨM = kµ
M . (3.6.5)

Thus the Lagrangian for waves in the mode M , in the range d3k/(2π)3, is

L(aM , a
∗
M , ∂ΨM ) = − 1

µ0
a∗MµaMνΛ

Hµν(∂ΨM ). (3.6.6)
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3.6.2 Euler-Lagrange equations for a wave subsystem

The Euler-Lagrange equations associated with the generalized coordinates a∗µ
M

and aν
M are required to give the wave equation and its hermitian conjugate,

respectively:

−µ0
∂LM

∂a∗Mµ

= ΛHµνaMν = 0, −µ0
∂LM

∂aMν
= a∗MµΛ

Hµν = 0. (3.6.7)

The phase itself does not appear in LM , and so the remaining Euler-Lagrange
equation reduces to

∂µ

(
∂LM

∂(∂µΨM )

)
= 0. (3.6.8)

In Whitham’s [9, 10] approach (3.6.8) is interpreted in terms of conservation of
wave action, which is equivalent to conservation of the occupation number for
wave quanta in a semiclassical notation. Specifically, using (3.6.3) and (3.6.4),
(3.6.8) corresponds to

∂µ[vµ
gM (k)NM (k)] = 0, (3.6.9)

where the 4-component quantity

vµ
gM (k) = [1,vgM (k)], vgM (k) =

∂ωM (k)
∂k

, (3.6.10)

is not a 4-vector.

3.6.3 Energy-momentum tensor T µν
M (k)

The energy-momentum tensor is derived by applying (3.1.21) to the wave
Lagrangian (3.6.6). This gives

T µν
M (k) =

∂LM (k)
∂kν

kµ. (3.6.11)

In evaluating (3.6.11), it is helpful to write the wave Lagrangian (3.6.6) in the
form LM (k) = −|aM (k)|2ΛM (k)/µ0, with ΛM (k) defined in (2.3.14), viz.

ΛM (k) = e∗Mµ(k)eMν(k)ΛHµν(kM ). (3.6.12)

The derivative in (3.6.11) reduces to

∂ΛM (k)
∂kν

=
∂ΛM (k)
∂ω

∂ω

∂kν
. (3.6.13)

The derivative ∂ΛM (k)/∂ω is expressed in terms of the ratio of electric to total
energy, RM (k), using (2.3.14), and this is combined with the factor |aM (k)|2
using the definition of the wave action NM (k), cf. (2.4.8) with (2.4.7). In this
way, (3.6.11) reduces to

T µν
M (k) = NM (k)vµ

gM (k)kν
M , (3.6.14)

where (3.6.10) is used. The interpretation of (3.6.14) is given in §2.4.7.



106 3 Particle and wave subsystems

3.6.4 Inclusion of emission and absorption

The derivation of the energy-momentum tensor (3.6.14) is for an isolated
wave system. Energy and momentum are necessarily conserved, so that one
has ∂µT

µν
M (k) = 0. When wave damping is included, the energy-momentum

tensor evolves according to (2.4.17). Including emission of the waves as a
source term, one has

∂µT
µν
M (k) = Sν

M (k) − γM (k)P ν
M (k), (3.6.15)

where γM (k) is the absorption coefficient (2.4.14).
The wave 4-momentum is P ν

M (k) = kµ
MNM (k), cf. (2.4.16). The emission

coefficient, Sν
M (k), is the rate at which 4-momentum in the waves is generated

through spontaneous emission.

3.6.5 Lorentz transformation of T µν
M (k)

The quantity T µν
M (k) does not transform as a 4-tensor. By definition, T µν

M (k)
is the energy-momentum tensor in the elemental range d3k/(2π)3 of k-space,
and it is the combination T µν

M (k)d3k/(2π)3 that must transform as a 4-tensor.
One may show this explicitly by writing T µν

M (k)d3k/(2π)3 in a covariant form.
On noting that ω = ωM (k) is the positive frequency solution of λ(kM ) = 0,
one has

T µν
M (k)

d3k

(2π)3
=
d4k

(2π)4
NM (k) δ

(
λ(k)

)
H(ω)

∂kµ

∂λ(k)
kν , (3.6.16)

which is to be evaluated at kµ = kµ
M . The right hand side of (3.6.16) is

in a manifestly covariant form, thereby establishing that the left hand side
transforms as a 4-tensor.

3.6.6 Energy-momentum tensor for static fields

The energy-momentum tensor (3.6.14) for a wave field applies to any system
whose linear response is described by a response tensor Πµν(k). However, this
does not apply to static fields. The form of the energy-momentum tensor for
the electromagnetic field in a medium in the static limit has been controversial.

The Minkowski form of the energy-momentum tensor is

T µν = FµαHα
ν + 1

4g
µν FαβHαβ , (3.6.17)

withHµν = [D,H], where D and H are defined by (1.5.3)). The form (3.6.17)
implies, in place of the vacuum case (1.2.24),

W = 1
2 (E · D + B · H), F = E × H, (3.6.18)

P = D × B, T =W1− ED − BH. (3.6.19)
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The stress 3-tensor, T , is not symmetric, and the 4-tensor includes a further
asymmetry in that F and P are different in general, corresponding to T 0i �=
T i0.

The Abraham form for the energy-momentum tensor is chosen to be sym-
metric. The underlying argument for the Abraham form is that the system is
made up of particle and the electromagnetic field, both of which have sym-
metric energy-momentum tensors, and hence the energy-momentum tensor
for the combined system should also be symmetric. A covariant form of the
Abraham energy-momentum tensor for a medium with response of the form
(1.5.6) in the rest frame is [3]

T µν
Ab = 1

2 (FµαHα
ν +HµαFα

ν) + 1
4g

µν FαβHαβ − n
2 − 1
2

(ūµΩν + ūνΩµ),

Ωµ = ūαFβγ ū
γ(Hµαūβ +Hαβ ūµ +Hβµūα), (3.6.20)

with n2 = εµ, and where ūµ is the 4-velocity of the rest frame.
The Minkowski and Abraham tensors correspond to different separations

between the electromagnetic and background subsystems. The choice of the
Minkowski form is dictated by the requirement that the 4-momentum associ-
ated with a wave field be proportional to kµ. Only the Minkowski form (3.6.20)
is consistent with this requirement, which is basic to a quantum mechanical
description in terms of wave quanta. The Abraham form may be appropriate
or convenient in other contexts where a description in terms of wave quanta
is not relevant, [11, 12, 3].
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3.7 Covariant theory of ray propagation

In the discussion so far, the system is assumed to be homogeneous. In a
weakly inhomogeneous medium, wave properties are treated by assuming a
two-scale approach. On a fast-short scale the dispersion is determined by
local properties ignoring the inhomogeneity, and the space-time dependence
is treated by Fourier transforming. On the slow-long scale the parameters of
the medium are allowed to change, such that the dispersion equation and the
resulting wave properties are treated as weakly varying function of space and
time. This is the approximation of geometric optics, which is characterized by
the concept of rays and of equations that describe the propagation of rays. The
validity of the approximation of geometric optics is determined primarily by
the requirement that logarithmic gradients, on the slow-long scale, of the wave
properties be small compared with the square of the wave vector, allowing a
clear separation of the two scales. A general relativistic formulation of ray
theory allows one to include the effects of curved space-time and of rotation.

3.7.1 Wave Hamiltonian

A Hamiltonian version of the ray equations follows by replacing the La-
grangian formalism of §3.6 by a Hamiltonian formalism. The conventional
(Legendre) transformation from Lagrangian to Hamiltonian is applied to the
wave Lagrangian, cf. (3.6.3), to derive the corresponding wave Hamiltonian.
The relevant transformation is implicit in (3.6.11), and the wave Hamilto-
nian may be identified as T 00

M (k), cf. (2.4.18). It is convenient to apply the
Hamiltonian formalism to a single wave quantum by setting the occupation
number, NM (k), to unity. The resulting Hamiltonian formalism describes the
propagation rays.

On omitting the factor NM (k) from T 00
M (k), the wave Hamiltonian is iden-

tified as
HM = ωM (k, x), (3.7.1)

where x denotes the slow space-time dependence. The Hamiltonian equations
for a ray are

dx

dt
=
∂ωM (k, x)
∂k

,
dk

dt
= −∂ωM(k, x)

∂x
,
dω

dt
=
∂ωM (k, x)

∂t
. (3.7.2)

The derivative on the left hand sides of each of equations (3.7.2) are written
in terms of time, but should be interpreted as an affine parameter with the
units of time. Strictly only the ratios of the derivatives on the left hand sides
have physical meaning.

Equations (3.7.2) cannot readily be written in a fully covariant form be-
cause the Hamiltonian itself is a frame-dependent quantity. One can write
(3.7.2) in the more concise form
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dxµ

dt
=
∂ωM (k, x)
∂kµ

,
dkµ

M

dt
=
∂ωM (k, x)
∂xµ

. (3.7.3)

Then (3.6.10) implies dxµ/dt = vµ
gM . Note that neither dxµ/dt nor dkµ

M/dt is
a 4-vector.

3.7.2 Eikonal approach

An alternative derivation of covariant equations for a ray is based on an eikonal
approach [1, 13]. In a weakly inhomogeneous or non-stationary medium the
phase difference between two time-like hypersurfaces along the ray path is
interpreted as the eikonal. This alternative derivation of the ray equations
starts from the requirement that the eikonal be an extremum, which is Fer-
mat’s principle.

Let λ be an affine parameter along the ray path, such that the ray path
may be written as xµ = xµ(λ), and such that one has λ = λ1 and λ = λ2 at
the two time-like hypersurfaces. The eikonal may be written as

Φ(λ1, λ2) =
∫ λ2

λ1

dλ kµ
dxµ

dλ
, (3.7.4)

where kµ is a weakly varying function of position x(λ) along the ray path,
determined by the local dispersion relation for the relevant wave mode. How-
ever, the ray path, and hence the path of integration, is not known. It may
be determined using the calculus of variations.

Let δxµ(λ) be some arbitrary change in the ray path, subject to the require-
ment that δx vanish at the end points λ = λ1, λ2. The ray path is determined
by the requirement that Φ be an extremum, which implies

δΦ(λ1, λ2) =
∫ λ2

λ1

dλ

[
dkµ

dxν
δxν dx

µ

dλ
+ kµδ

(
dxµ

dλ

)]
= 0. (3.7.5)

Partially integrating the second term, and noting that the integrated term
vanishes because δx vanishes at λ = λ1, λ2, (3.7.5) implies

δΦ(λ1, λ2) =
∫ λ2

λ1

dλ

(
dkµ

dxν

dxµ

dλ
− dkµ

dλ
gµν

)
δxν = 0, (3.7.6)

with gµν = ∂xµ/∂xν . The result (3.7.6) must apply for arbitrary δx, and this
is possible only for

dkµ

dxν

dxµ

dλ
− dk

ν

dλ
= 0. (3.7.7)

One requires that the waves be in a specific mode, M say. Hence the
dispersion relation k = kM must be satisfied locally at each point along the
ray. Let the dispersion equation be written in the invariant form D(k, x) =
0 in the slowly varying medium. The dispersion equation must be satisfied
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everywhere along the ray path, and this requires not only D(k, x) = 0 but
also dD(k, x)/dλ = 0. This requires that

dD(k, x)
dλ

=
dkµ

dλ

∂D(k, x)
∂kµ

+
dxµ

dλ

∂D(k, x)
∂xµ

= 0 (3.7.8)

be satisfied along the ray path. Identifying equations (3.7.7) and (3.7.8) leads
to

dxµ

dλ
=
∂D(k, x)
∂kµ

,
dkµ

dλ
= −∂D(k, x)

∂xµ
. (3.7.9)

Equations (3.7.9) become Hamilton’s equations, (3.7.2), for an appropriate
choice of λ and D(k, x), for example, for λ→ t, D(k, x) → ωM (k, x) − ω.

3.7.3 Illustrative example: transverse waves

The ray equations in the form (3.7.9) involve the affine parameter, λ, which
is of no direct interest itself. To illustrate how (3.7.9) are used, consider the
simple example of transverse waves in a cold isotropic plasma with a plasma-
density gradient.

For transverse waves in a cold isotropic plasma, the dispersion relation may
be written k2 − ω2

p(x) = 0. One is free to choose D(k, x) = k2 − ω2
p(x). The

first of (3.7.9) gives dxµ/dλ = 2kµ, which implies dt/dλ = 2ω, dx/dλ = 2k,
and hence dx/dt = (dx/dλ)/(dt/dλ) = k/ω. The second of (3.7.9) implies
dkµ/dλ = ∂µω

2
p(x). Let the gradient of ω2

p(x) be along a specific direction;
then ω and the components of k orthogonal to this direction are constant
(Snell’s law). One has dk/dt = (dk/dλ)/(dt/dλ) = (1/2ω)gradω2

p(x). These
ray equations correspond to those obtained from (3.7.2) with ωM (k, x) =
[ω2

p(x)+ |k|2]1/2. For this example, the refractive index is n = (1−ω2
p/ω

2)1/2,
the group velocity is vg = ∂ω/∂k = k/ω, and the ray equations may be
written in the form

dx

ds
= κ,

d(nκ)
ds

=
∂n

∂x
, (3.7.10)

with κ = k/|k|, and where s = vgt denotes distance along the ray path.

3.7.4 Curved space-time

The generalization of the 4-tensor formalism from flat space-time to curved
space-time involves allowing the metric tensor gµν to depend on x. An invari-
ant element of proper time is

dτ2 = gµνdx
µdxν , (3.7.11)

where the x-dependence of gµν is implicit. The contravariant components
of the metric tensor are defined such that gµαgαν = δµν is the unit tensor.
Derivatives of the metric tensor appear in the Christoffel symbol



3.7 Covariant theory of ray propagation 111

Γµ
αβ = 1

2g
µν(gαν,β + gβν,α − gαβ,ν), (3.7.12)

where a comma denotes a partial derivative, ∂µφ = φ,µ. The covariant deriva-
tive of a 4-vector Aµ is

Aµ
;ν = Aµ

,ν + Γµ
ναA

α. (3.7.13)

In an integral over space-time, the invariant element d4x = dx0dx2dx3dx3 in
flat space-time is replaced by

√−g d4x =
√−g dx0dx2dx3dx3, where g is the

determinant of gµν .
The counterpart of a straight line (the shortest distance between two

points) in flat space is a geodesic line in curved space-time. The geodesic
equation is

d2xµ

dλ2
+
dxα

dλ

dxβ

dλ
Γµ

αβ = 0, (3.7.14)

which corresponds to an extremum of the proper time,
∫
dτ , with dτ given by

(3.7.11), between the two space-time points. The geodesic equation (3.7.14)
may be written in the form

vα∂αv
µ = 0, vµ =

dxµ

dλ
. (3.7.15)

3.7.5 Ray equations in curved space-time

The effect of space-time curvature may be included in the ray equations by
assuming that a two-scale model applies with the wave properties determined
on the short-fast scale by the theory for a locally flat space-time, and with
the ray equations describing the propagation on the slow-long scale.

The ray equations (3.7.9) are already in a form that applies in curved
space-time, provided that one interprets this form appropriately. An impor-
tant point concerns the variables being held constant in the partial derivatives
in (3.7.9). To be specific, let us denote these explicitly by writing (3.7.9) in
the form

dxµ

dλ
=
[
∂D(k, x)
∂kµ

]
xσ

,
dkµ

dλ
= −

[
∂D(k, x)
∂xµ

]
kσ

, (3.7.16)

that is, one carries out the differentiation with respect to the covariant compo-
nents kµ keeping the contravariant components of xσ constant, and one carries
out the differentiation with respect to the contravariant components xµ keep-
ing the covariant components kσ constant. The reason behind the choice of
contravariant and covariant components in (3.7.16) is that one requires kµ

be the derivative of the phase with respect to xµ, specifically, kµ = ∂Φ/∂xµ,
which implies that the derivative with respect to xµ is to be performed keeping
the covariant components of kσ constant.
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To see the implications of this re-interpretation of (3.7.9), consider the
particular case of transverse waves in vacuo in a curved space-time. The dis-
persion relation is k2 = 0, so one is free to choose D = k2. The first of the ray
equations (3.7.16) gives dxµ/dλ = 2kµ. In evaluating the second of (3.7.16), in
order to take the derivative at constant kσ one writes k2 = kαkβg

αβ, so that
one has ∂k2/∂xµ = kαkβg

αβ
,µ = kαkβgαβ,µ. Using dgαβ/dλ = gαβ,σdx

σ/dλ,
(3.7.16) implies the geodesic equation for the ray:

d2xµ

dλ2
= 2

d(gµνkν)
dλ

= 2kνg
µν

,σ
dxσ

dλ
+ 2gµν dkν

dλ
= −dx

α

dλ

dxβ

dλ
Γµ

αβ . (3.7.17)

This confirms that rays follows geodesics, cf. (3.7.14) and (3.7.17).
The condition D = 0 is not imposed explicitly in deriving (3.7.17). In the

case D = k2, the dispersion equation k2 = 0 with dxµ/dλ = 2kµ implies

gαβ
dxα

dλ

dxβ

dλ
= 0, (3.7.18)

which is the condition for the geodesic to be null. In practice (3.7.18) is used
to write down first integrals of the ray equations.

The simplest generalization of the foregoing results is to transverse waves
in a cold isotropic plasma with dispersion relation k2 = ω2

p, where the plasma
frequency ωp = ωp(x) varies slowly in space or time. With D = k2 − ω2

p,
the term −ω2

p leads to a nonzero term 2gµν∂νω
2
p on the right hand side of

the geodesic equation, cf. (3.7.17). This additional term plays the role of an
effective force, and one may attribute the deviation of the ray path from that
of a null geodesic to this force.

3.7.6 Cold plasma in a Schwarzschild metric

To illustrate the effect of curved space-time, consider a simple example: trans-
verse waves in a cold plasma in a Schwarzschild metric.

The line element of the Schwarzschild metric (in Schwarzschild coordi-
nates) is

dτ2 = α2dt2 − dr
2

α2
− r2(dθ2 + sin2 θ dφ2), α2 = 1 − rg

r
, (3.7.19)

where rg = 2GM is the gravitational radius, M is the mass of the central
object, andG is Newton’s constant. The quantity α is called the lapse function
or the redshift factor. One identifies the components of the metric tensor as
(x0 → t) gtt = α2, grr = −1/α2, gθθ = −r2, gφφ = −r2 sin2 θ, with all other
components zero.

Consider transverse waves in the case where ω2
p(r) depends only on the ra-

dial coordinate [14]. Choosing spherical polar coordinates such that the initial
direction of the ray is in the plane sin θ = 1, there is no force perpendicular to
this plane so that the motion is confined to this plane, and may be described
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by variables x0 = t, r, φ. The only variable that appears in the metric tensor
(in the plane sin θ = 1) is r, and hence x0 and φ are ignorable, and their
conjugate momenta are conserved. The conserved quantities are v0 and vφ,
respectively. For D = k2 −ω2

p (3.7.16) gives v0 = dx0/dλ = 2k0, with k0 = ω,
from which it follows that the conserved quantity is v0 = g00v0 = 2α2k0, which
determines how the frequency of the wave varies along the ray path as a re-
sult of the gravitational red shift. With vφ = dφ/dλ = −2kφ and gφφ = −r2,
the other conserved quantity is vφ = gφφv

φ = 2r2kφ, which corresponds to
conservation of the angular momentum, L = r2kφ. The dispersion equation in
the form g00k

0k0 + grrk
rkr + gφφk

φkφ = ω2
p may be solved for kr, and hence

for dr/dλ = −2kr. One has

∣∣∣∣ drdλ
∣∣∣∣ =

[
v20 − α2

(
L2

r2
+ 4ω2

p(r)
)]1/2

. (3.7.20)

The orbit may be found by solving the three simultaneous equations for dt/dλ,
dr/dλ, dφ/dλ.

3.7.7 Rays in a rotating coordinate frame

A different example is for wave propagation in a rotating coordinate frame,
which is of particular interest in pulsars. General relativistic effects in a ro-
tating frame are usually described in terms of the Kerr metric. However, the
formalism of curved space-time can also be used to describe processes in a
rotating frame in the absence of gravitational effects.

Space-time around a rotating compact object, such as a neutron star or a
black hole, differs from the Schwarzschild metric due to the Lense-Thirring ef-
fect, also called the dragging of inertial frames. The gravitational field around
a rotating massM , with angular momentum J , is described by the Kerr met-
ric, and the dragging of inertial frames is described by an angular velocity, ω,
which differs from the angular velocity Ω of the star. The angular velocity ω
is interpreted as that of zero-angular-momentum observers (ZAMOs) which
rotate relative to the inertial frame at infinity. For a neutron star, one has

ω ≈ 2G
r3

J = jθ
(rg
r

) (R2

r2

)
Ω, (3.7.21)

with jθ ≈ 0.4. Notably different features of the metric tensor in this case are
that it depends on both t and φ. The simplest useful generalization of the
Schwarzschild line element (3.7.19) is

dτ2 = α2dt2 − dr
2

α2
− r2[dθ2 + sin2 θ(dφ + ωdt)2], (3.7.22)

where the replacement dφ→ dφ+ωdt takes account of the dragging of inertial
frames. The frame dragging gives rise to an electric field that is intrinsically
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general relativistic and that can play an important role in the acceleration of
particles [15, 16, 17]. Equation (3.7.21) implies that this effect falls off rapidly,
∝ 1/r3, away from the star.

The example discussed here is for a system that is formally flat but is
treated in terms of a noninertial frame, specifically a rotating frame. The line
element for a rotating coordinate system is analogous to (3.7.22) with α→ 1
and ω → Ω, specifically,

dτ2 = dt2 − dr2 − dz2 − r2(dφ +Ωdt)2. (3.7.23)

From (3.7.23) one identifies the covariant components of the metric tensor,
and the contravariant components are found by inverting the tensor. One finds

gtt = 1 −Ω2r2, grr = gzz = −1, gφφ = −r2, gtφ = gφt = −Ωr2,

gtt = 1, grr = gzz = −1, gφφ = −1 −Ω2r2

r2
, gtφ = gφt = −Ω.

(3.7.24)

The covariant components of the wave 4-vector are related the contravariant
components by

kt = (1 −Ω2r2)kt −Ωr2kφ, kr = −kr, kz = −kz, kφ = −r2(kφ +Ωkt).
(3.7.25)

Here we have kt = ω and kφ = k · φ̂/r.
As an example, consider the propagation of Alfvén waves in the corotating

frame [18]. One may choose D(k, x) = ku±kb βA. To reduce the problem to a
two-dimensional one, consider propagation in the r-φ plane (kz = 0). The com-
ponents of the flow 4-velocity, uµ, are zero except for u0 = dt/dτ = (gtt)−1/2,
and u0 = 1/u0, and the contravariant components of bµ = (0, br, bz, bφ) in-
clude bφ = b · φ̂/r.

The ray equations in the form (3.7.16) give

dt

dλ
= (1 −Ω2r2)−1/2,

dr

dλ
= ±βAb

r,
dφ

dλ
= ±βAb

φ,

dkt

dλ
= 0,

dkr

dλ
= −kt∂r

1
(1 −Ω2r2)1/2

∓ kr∂r(βAb
r) ∓ kφ∂r(βAb

φ),

dkφ

dλ
= ∓kr∂φ(βAb

r) ∓ kφ∂φ(βAb
φ). (3.7.26)

Although the physical system described by (3.7.26) is the same as that de-
scribed by (3.7.9) in a nonrotating frame, the description in the rotating frame
contains a variety of apparent phenomena that are not real, in the sense that
the centrifugal force is not real. The rays are directed along the magnetic
field lines in the nonrotating frame, and the much more complicated ray path
implied by solving (3.7.26) is just a description of this in the rotating frame.
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A subtle point is that the frequency, kt, is not constant in the rotating frame
in general. One has kt = gttkt + gtφkφ, and although (3.7.26) implies that
kt is constant, it implies that kφ is constant only if there is no dependence
on φ. The change in frequency is characteristic of a time-dependent medium,
and here this may be attributed to the azimuthal dependence coupled with
rotation implying an apparent time dependence of the medium along the ray
path.
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4

Dispersion in relativistic plasmas

The linear response tensor completely describes the linear electromagnetic
properties of a medium. In particular the linear response tensor determines the
properties of the natural wave modes of the medium, including the dispersion
relation, the polarization vector, the energetics and the damping (chapter 2).
Most plasmas consist of thermal particles plus various nonthermal distribu-
tions that are important in exciting waves. However, the properties of the
waves themselves are determined primarily by the thermal particles. Hence,
the case of an isotroptic thermal distribution plays a central role in the theory
of dispersion in plasmas.

Expressions for the linear response 4-tensor for a collisionless plasma with
an arbitrary distributions of particles are derived in chapter 3, and these gen-
eral forms are applied to an arbitrary isotropic distribution in §4.1. A thermal
distribution of particles is a Jüttner in the relativistic case. The Jüttner distri-
bution, introduced in §4.2, involves Macdonald functions, Kν(x), whose prop-
erties are summarized. The linear response tensor for a Jüttner distribution
is derived using several alternative methods in §4.3. The relativistic plasma
dispersion functions that appear in this response tensor are discussed in §4.4.
The properties of longitudinal and transverse waves in a relativistic thermal
plasma are derived and discussed in §4.5. The response of anisotropic plasmas
is considered in §4.6. Exact and approximate expressions for the nonlinear
response tensors are written down in §4.7.
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4.1 Linear response for an isotropic plasma

Two superficially different expressions for the linear response 4-tensor,Πµν(k),
are implied by the forward-scattering and Vlasov approaches. Both forms are
useful. In this section both are applied to an isotropic plasma.

4.1.1 General expressions for the linear response tensor

The forward-scattering approach leads to the expression (3.2.1) for the linear
response tensor:

Πµν(k) = −q
2

m

∫
d4p

(2π)4
F (p) aµν(k, u),

aµν(k, u) = gµν − k
µuν + kνuµ

ku
+
k2 uµuν

(ku)2
, (4.1.1)

with p = mu. The Vlasov approach leads to the expression (3.2.9) for the
linear response tensor:

Πµν(k) = q2
∫

d4p

(2π)4
uµGαν(k, u)

∂F (p)
∂pα

,

Gµν(k, u) = gµν − k
µuν

ku
. (4.1.2)

The equivalence of the forms (4.1.2) and (4.1.1) is established by partially
integrating, using

∂

∂pα
[uµGαν(k, u)] =

aµν(k, u)
m

. (4.1.3)

The factor δ(p2 − m2) in F (p) does not contribute in the partial integra-
tion. To see this, consider any function g(p2), with ∂g(p2)/∂pα = pαg′(p2),
where the prime denotes the derivative. The identity pαG

αν(k, u) = 0 im-
plies Gαν(k, u)∂g(p2)/∂pα = 0 for any g(p2). In (4.1.2) this ensures that the
derivative of δ(p2 −m2) does not contribute in the partial integration.

4.1.2 Antihermitian part

The antihermitian part of the linear response tensor describes linear dissipa-
tive effects. To obtain the antihermitian part one needs to impose the causal
condition. This is achieved through the Landau prescription, which requires
that ku be interpreted as ku + i0 in the denominators in (4.1.1) and (4.1.2).
The Plemelj formula (1.3.20), in the form

1
ku+ i0

= ℘ 1
ku

− iπδ(ku), (4.1.4)
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leads to a separation into hermitian and antihermitian parts in (4.1.1) or
(4.1.2). The hermitian part arises from the principal value and the antihermi-
tian part from the δ-function in (4.1.4), which is sometimes referred to as the
semiresidue term or the resonant part.

The antihermitian part of the linear response tensor in the form (4.1.2)
follows directly from (4.1.2) with (4.1.4):

ΠAµν(k) = −iπ q2
∫

d4p

(2π)4
uµuν δ(ku) kα ∂F (p)

∂pα
. (4.1.5)

The antihermitian part of the linear response tensor in the form (4.1.1) re-
quires that one impose the causal condition on a term with (ku)2 in the
denominator. The imaginary part is obtained using

Im
(
kk1 . . . kkn−1

(ku+ i0)n

)
=

(−1)n−1

(n− 1)!
kσ

n−1

∂

∂uσ
. . . kα

1

∂

∂uα
[−iπ δ(ku)], (4.1.6)

with n = 2. After a partial integration the result (4.1.5) is reproduced.

4.1.3 Number densities and plasma frequencies

Before considering specific distributions of particles, a preliminary point con-
cerns the description of the number density of the particles, which appears
in the theory through the plasma frequency. Even in a covariant theory, it is
conventional to define the number density in a particular frame, usually the
rest frame of the plasma. There is a Lorentz invariant, the proper number
density, npr, that may be used to describe the number density but it is rarely
used, and it is used only sparingly here.

In the following discussion, both F (p) and f(p) are used: F (p) is the distri-
bution function in 8-dimensional x-p phase space, and f(p) is the distribution
function in 6-dimensional x-p space. The relation between F (p) and f(p)
follows from, in ordinary units,

d4p

(2πh̄)4
F (p) =

d3p

(2πh̄)3γ
f(p). (4.1.7)

The distribution function f(p) in this notation is dimensionless, and the dif-
ferential quantity d3p/(2πh̄)3 has the dimensions of an inverse volume. The
differentials (4.1.7) have the dimensions of a number density, and are the
proper number density in the infinitesimal range. The relation between F (p)
and f(p) is

F (p) = 4πh̄mc δ(p2 −m2c2) f(p). (4.1.8)

Thus F (p) has the same dimensions as h̄/mc, which is a length (the Compton
wavelength).

The integral over d3p includes an integral over solid angle, and an integral
over |p|:
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d3p =

∫ ∞

0

d|p| |p|2
∫ 1

−1

d cos θ
∫ 2π

0

dφ,

∫ ∞

0

d|p| |p|2
γ

= m3

∫ 1

0

dβ γ4β = m3

∫ ∞

0

dχ sinh2 χ, (4.1.9)

where θ, φ are polar angles that may be chosen for convenience, and where
natural units are used, but with v → β: |p| = mγβ = m sinhχ, γ = (1 −
β2)−1/2.

The number density, n, in any specific frame, and the proper number
density, npr, are given by

n(x) =
∫

d4p

(2π)4
γ F (x, p) =

∫
d3p

(2π)3
f(x,p, t), (4.1.10)

npr(x) =
∫

d4p

(2π)4
F (x, p) =

∫
d3p

(2π)3
f(x,p, t)
γ

, (4.1.11)

respectively. The proper number density is an invariant, but it is not equal to
the actual number density in any frame. The only exception is the limiting
case of a cold distribution of particles, F (p) = n(2π)4δ4(p −mũ), for which
one has npr = n.

The number density n is not an invariant. On writing

nµ =
∫

d4p

(2π)4
uµ F (p) = nūµ, (4.1.12)

it is apparent that n is the time-component of the 4-vector nµ in the rest
frame ūµ = [1,0]. Nevertheless, even in a covariant theory it is convenient to
treat n simply as a plasma parameter, albeit one derived in a specific frame.

The plasma frequency, ωp, is defined in terms of n, and a proper plasma
frequency, ωp0, may be defined in terms of npr:

ω2
p =

q2n

ε0m
, ω2

p0 =
q2npr

ε0m
. (4.1.13)

As with the proper number density, the proper plasma frequency has the same
value irrespective of the frame used to calculate it. One has ωp0 ≤ ωp, with
the equality applying only for a cold plasma.

4.1.4 Response for an isotropic plasma

An isotropic medium is defined in §1.6 as a medium which is isotropic in its
rest frame. For an isotropic plasma, the response is necessarily of the form
(1.6.1), so that it is described by three invariants ΠL(k), ΠT (k) and ΠR(k).
The rotatory part is zero, ΠR(k) = 0, for a classical plasma, and (1.6.1)
reduces to
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Πµν(k) = ΠL(k)Lµν(k, ũ) +ΠT (k)T µν(k, ũ). (4.1.14)

Thus only two invariants are required to describe the response of an arbitrary
isotropic plasma. With the response tensor in the form (4.1.1), the L and T
parts arise from the L and T parts of aµν(k, u). These are

aL(k, u) =
(kũ)4

k4
Lµν(k, ũ) aµν(k, u), aT (k, u) = 1

2Tµν(k, ũ) aµν(k, u),

(4.1.15)
and explicit evaluation gives

aL(k, u) =
(kũ)2

k2
+

(kũ)2

k2[k2 − (kũ)2]
(ku kũ− k2uũ)2

(ku)2
,

aT (k, u) = 1
2

[
1 +

k2

(ku)2
− 1
k2 − (kũ)2

(ku kũ− k2uũ)2

(ku)2

]
. (4.1.16)

Thus one finds

ΠL(k) = −q
2

m

(kũ)2

k2 − (kũ)2

∫
d4p

(2π)4
F (p)

[
1 − 2kũ uũ

ku
+
k2 (uũ)2

(ku)2

]
,

(4.1.17)

ΠT (k) = −q
2

m

∫
d4p

(2π)4
F (p)

{
1 +

k2

2(ku)2

− k2

2[k2 − (kũ)2]

[
1 − 2kũ uũ

ku
+
k2 (uũ)2

(ku)2

]}
. (4.1.18)

The assumption that the distribution is isotropic is not used explicitly in
deriving (4.1.17) and (4.1.18). The assumption of isotropy is used to carry
out the angular integrals to reduce (4.1.17), (4.1.18) to expressions involving
only a single integral. The angular integrals are performed by writing ku =
γ(ω − k · v) = γ|k|(z − β cos θ), with z = ω/|k|, β = v, |p| = mγβ, ω = kũ,
|k|2 = (kũ)2 − k2. The integral over φ is trivial and the integrals over cos θ
are elementary. For an isotropic distribution (4.1.17), (4.1.18) give

ΠL(k) =
q2z2npr

m
− 2πq2z2

m

∫ ∞

0

d|p| |p|2
γβ

f(p)

×
[
2z ln

(
z − β
z + β

)
− (1 − z2)

(
1

z − β − 1
z + β

)]
, (4.1.19)

ΠT (k) =
q2z2npr

m
− 2πq2(1 − z2)z

m

∫ ∞

0

d|p| |p|2
γβ

f(p) ln
(
z − β
z + β

)
. (4.1.20)

One may write z = kũ/[(kũ)2 − k2]1/2 in an arbitrary frame, reducing to
z = ω/|k| in the rest frame. Explicit evaluation of the remaining integrals is
carried out in §4.3 for a relativistic thermal distribution function.
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4.1.5 Vlasov form for an isotropic plasma

The expressions (4.1.17) and (4.1.18) are the longitudinal and transverse parts
of the response tensor in the forward-scattering form (4.1.1). Alternative ex-
pressions follow by starting from the Vlasov form (4.1.2) for the response
tensor.

The first step in this evaluation involves the derivative ∂F (p)/∂pα in
(4.1.2). For an isotropic distribution, F (p) can depend on p only through
the available invariants, p2 and pũ = muũ, which is equal to the energy, ε,
in the rest frame. Hence one can write ∂/∂pα = 2pα∂/∂p

2 + ũα∂/∂pũ. With
p2 = m2 fixed by the δ-function in F (p), only the derivative with respect to
pũ remains, and it gives

∂F (p)
∂pα

= ũα
∂F (p)
∂pũ

. (4.1.21)

In this way (4.1.2) reduces to

Πµν(k) = q2
∫

d4p

(2π)4

[
uũ ũµũν − kũ u

µuν

ku

]
∂F (p)
∂pũ

. (4.1.22)

In deriving (4.1.22) it is noted that the average of uµ over any isotropic dis-
tribution is equal to ũµ, and that this allows one to make the replacement
uµ → uũ ũµ for any term in the integrand that is linear in uµ. The longitudi-
nal and transverse parts are constructed using the same projection procedure
as in the derivation of (4.1.17) and (4.1.18), respectively. One finds

ΠL(k) = q2
(kũ)2

k2 − (kũ)2

∫
d4p

(2π)4
uũ

(
1 − kũ uũ

ku

)
∂F (p)
∂pũ

, (4.1.23)

ΠT (k) = −q
2

2

∫
d4p

(2π)4

[
kũ

ku
(1 − (uũ)2)

+
(kũ)2

k2 − (kũ)2
uũ

(
1 − kũ uũ

ku

)]
∂F (p)
∂pũ

. (4.1.24)

Performing the angular integrals in the rest frame gives

ΠL(k) = 2πq2z2
∫ ∞

0

d|p| |p|2 ∂f(p)
∂ε

[
2 +

z

β
ln
(
z − β
z + β

)]
, (4.1.25)

ΠT (k) =
2πq2

2

∫ ∞

0

d|p| |p|2 ∂f(p)
∂ε

[
2z2 + (z2 − β2)

z

β
ln
(
z − β
z + β

)]
,

(4.1.26)

with ε = mγ. The integrals over the remaining variable are evaluated in §4.3
for a Jüttner distribution.
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4.2 Relativistic thermal distribution

In this section a relativistic thermal distribution of classical particles is in-
troduced, and some of its properties are described. Properties of Macdonald
functions that are relevant to the normalization of the distribution function
and to various integrals that appear in the discussion in §4.3 of the linear
response tensor for this distribution are also summarized here.

4.2.1 Jüttner distribution

The relativistic counterpart of a nonrelativistic Maxwellian distribution of
particles is a distribution f(p) ∝ exp(−ε/T ), where ε = γm is the energy of
a particle and T is the temperature in energy units. After normalization to
the number density, n, in the rest frame, the details of which are given at the
end of this section, this leads to the Jüttner distribution [1], also called the
Jüttner-Synge distribution [2],

f(p) =
2π2nρ e−ργ

m3K2(ρ)
, (4.2.1)

where Kν(x) is a Macdonald function, and ρ = m/T is the inverse temper-
ature in units of the rest energy of the particle. (In ordinary units one has
2π2/m3 → (2πh̄)3/4π(mc)3 and ρ → mc2/T in (4.2.1).) With T in energy
units, a temperature T = 1 eV corresponds to T = 1.16 × 104 K, T = 1 J
corresponds to T = (1.38 × 10−23)−1 K. Note that ρ = 1 corresponds to
T = m = 0.550 MeV which translates to T = 5 × 109 K. Hence, any plasma
with temperature of this order is intrinsically relativistic. The nonrelativistic
limit corresponds to ρ� 1 and the ultrarelativistic limit to ρ� 1.

In an arbitrary frame, in which the 4-velocity of the rest frame of the
plasma is ũ, (4.2.1) corresponds to

F (p) =
(2π)3nρ
m2K2(ρ)

δ(p2 −m2) exp[−ρ(pũ/m)] (4.2.2)

The ratio of the proper number density, npr, to n is

npr

n
=
K1(ρ)
K2(ρ)

. (4.2.3)

The proper number density is always smaller than the number density, and
for a Jüttner distribution this follows from the inequalityK1(ρ) < K2(ρ). The
ratio K1(ρ)/K2(ρ) approaches unity in the nonrelativistic limit ρ → ∞ and
ρ/2 in the ultrarelativistic limit ρ� 1.

The integrals involved in the normalizations (4.1.10) and (4.1.11), leading
to (4.2.3), are expressed in terms of Macdonald functions by introducing the
variable χ, cf. (1.1.17),
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γ = coshχ, |p| = mγ|v| = m sinhχ, β = |v| = tanhχ, (4.2.4)

with γ = (1 − β2)−1/2. The Macdonald functions appear through

Kν(x) =
(x/2)νΓ (1

2 )
Γ (ν + 1

2 )

∫ ∞

0

dχ sinh2ν χ e−x cosh χ, (4.2.5)

which is a standard integral representation of Kν(x). In (4.2.5) Γ (x) is the
Gamma function, whose properties include

Γ (x+ 1) = xΓ (x), Γ (1) = 1, Γ (1
2 ) = π1/2. (4.2.6)

The integral (4.2.5) also applies when ν is negative, and K−ν(x) = Kν(x)
implies

Kν(x) =
(x/2)−νΓ (ν + 1

2 )
Γ (1

2 )

∫ ∞

0

dχ
e−x cosh χ

sinh2ν χ
, (4.2.7)

where the identity
Γ (1

2 + ν)Γ (1
2 − ν) =

π

cosπx
(4.2.8)

is used.

4.2.2 Properties of Kν(x)

The following are some standard properties of the Macdonald functions,
Kν(x), [3, 4, 5]. The Macdonald functions Kν(x) are modified Bessel func-
tions of order ν. They satisfy the differential equation

d2

dx2
Kν(x) +

1
x

d

dx
Kν(x) −

(
1 +

ν2

x2

)
Kν(x) = 0, (4.2.9)

and the recursion relations

Kν−1(x) −Kν+1(x) = −2
ν

x
Kν(x), (4.2.10)

Kν−1(x) +Kν+1(x) = −2
d

dx
Kν(x). (4.2.11)

One also has K−ν(x) = Kν(x). The recursion relations imply

1
x

d

dx

[
x±νKν(x)

]
= −x±ν−1Kν∓1(x). (4.2.12)

The expansion of Kν(x) for small x is

Kn(x) = 1
2

n−1∑
k=0

(−)k (n− k − 1)!
k!(x/2)n−2k

+ (−)n+1
∞∑

k=0

(x/2)n+2k

k!(n+ k)!

×
[
ln(x/2) − 1

2ψ(k + 1) − 1
2ψ(n+ k + 1)

]
≈ 2n−1(n− 1)!

xn
, (4.2.13)
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with ψ(x) = (d/dx) lnΓ (x), giving ψ(1) = 0.5772 . . ., which is Euler’s con-
stant. The approximate form applies for n > 0. The asymptotic expansion for
large x is

Kν(x) =
( π

2x

)1/2

e−x

(
1 +

4ν2 − 1
8x

+
(4ν2 − 1)(4ν2 − 9)

128x2
+ · · ·

)
. (4.2.14)

Another class of functions related to Kn(x) are the multiple integrals of
K0, denoted by Kin(ρ). One has

Kin(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K0(ρ) for n = 0,∫∞
ρ dxKin−1(x) for n > 0,

Kin(ρ) = (−)n d
|n|

dρ|n|
K0(ρ) for n < 0.

(4.2.15)

These functions satisfy the recurrence relation

rKir+1(ρ) = −ρKir(ρ) + (r − 1)Kir−1(ρ) + ρKir−2(ρ), (4.2.16)

and they have the integral representation

Kin(ρ) =
∫ ∞

0

dχ
e−ρ coshχ

coshn χ
. (4.2.17)

Note that (4.2.16) allows one to write an arbitrary Kin(ρ) in terms of any
other plus a combination of Macdonald functions. It is conventional to choose
Ki2(ρ) as the only one to appear explicitly. For example, (4.2.16) implies
Ki1(ρ) = −Ki2(ρ)/ρ+K1(ρ). Expansions of Kin(x) give

Kin(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Γ (1

2 )Γ (n+ 1
2 )

2Γ (n+ 1)

(
1 −

Γ (1
2 (n+ 1))Γ (1

2 (n− 1))[
Γ (1

2n)
]2 x+ · · ·

)
x� 1,

( π
2x

)1/2

e−x

(
1 − 1 + 4n

8x
+ · · ·

)
, x� 1.

(4.2.18)

4.2.3 Average quantities

A relevant example of the use of some of the foregoing results is in the eval-
uation of averages over the distribution function (4.2.1), including the nor-
malization of the distribution (4.2.1) and the evaluation of the proper number
density (4.2.3). Let an average over the Jüttner distribution (4.2.1) be denoted
by angular brackets. Such averages may be evaluated in terms of integrals over
the variable χ. Specifically, for an arbitrary function K(χ) one has

〈K〉 =
ρ

K2(ρ)

∫ ∞

0

dχ coshχ sinh2 χK(χ) e−ρ cosh χ. (4.2.19)
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After a partial integration (4.2.19) becomes

〈K〉 =
1

K2(ρ)

∫ ∞

0

dχ e−ρ cosh χ d

dχ

[
coshχ sinhχK(χ)

]
, (4.2.20)

with the derivative carried out using

d coshχ
dχ

= sinhχ,
d sinhχ
dχ

= coshχ, cosh2 χ− sinh2 χ = 1.

The normalization factor K2(ρ) follows from (4.2.20) with K = 1, which is
evaluated using (4.2.5) with ν = 0 and ν = 1, and using the recursion relation
(4.2.10) with ν = 1.

For the average of powers of the Lorentz factor, 〈γn〉, one sets K(χ) →
coshn χ in (4.2.20), and (4.2.19) implies

〈γn〉 = (−)n ρ

K2(ρ)
dn

dρn

(
K2(ρ)
ρ

)
. (4.2.21)

In particular, for the Lorentz factor one finds

〈γ〉 =
(
K1(ρ)
K2(ρ)

+
3
ρ

)
. (4.2.22)

The average squared momentum follows from K(χ) → m2 sinh2 χ in (4.2.20),
giving

〈|p|2〉 =
3m2

ρ

(
K1(ρ)
K2(ρ)

+
4
ρ

)
. (4.2.23)

The nth moment of the speed squared, 〈β2n〉, follows from K(χ) → tanh2n χ
in (4.2.20), giving

〈β2n〉 =
1

K2(ρ)

∫ ∞

0

dχ e−ρχ

[
(2n+ 1)

sinh2n χ

cosh2n−2 χ
− (2n− 1)

sinh2n+2 χ

cosh2n χ

]
,

(4.2.24)
which reduces to a sum of terms of the form of the standard integrals (4.2.5),
(4.2.17). In particular, the average squared speed, 〈β2〉, and the next highest
term have the explicit forms

〈β2〉 =
(

1 − Ki2(ρ)
K2(ρ)

)
, 〈β4〉 =

(
1 − 4Ki2(ρ) − 3Ki4(ρ)

K2(ρ)

)
. (4.2.25)

Using (4.2.16), Ki4(ρ) is rewritten in terms of Ki2(ρ): Ki4(ρ) = 1
6

{
(3 +

ρ2)Ki2(ρ) − [ρ2K0(ρ) − ρK1(ρ)]
}
.

In the nonrelativistic limit ρ� 1 one may evaluate (4.2.25) using the ex-
pansion (4.2.18) of Kin(ρ) for large ρ to find 〈β2〉 = 3V 2, with ρ = 1/V 2, and
in this case one has 〈|p|2〉 = m2〈v2〉 = m〈β2〉, 〈γ〉 = 1+3V 2/2. When relativis-
tic effects are important, none of these relations is valid. In the ultrarelativistic
limit ρ� 1, one has 〈γ〉 = 3/ρ, 〈|p|2〉 = 12m2/ρ2, 〈β2〉 ≈ 1 − (3π/32)ρ.
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4.3 Linear response of a relativistic thermal plasma

A covariant description of the linear response tensor,Πµν(k), for the relativis-
tic thermal (Jüttner) distribution (4.2.2) is developed in this section using four
different procedures, leading to four qualitatively different forms for ΠL(k),
ΠT (k). Two methods involve direct evaluation of the response tensor in the
forward-scattering form (4.1.1) and the Vlasov form (4.1.2), respectively. The
other two methods are covariant versions of methods used by Silin [6] and
Trubnikov [7].

4.3.1 Relativistic plasma dispersion function T (z, ρ)

The integrals in (4.1.19), (4.1.20) are evaluated directly in terms of relativistic
plasma dispersion functions for a thermal distribution. A variety of choices
for the plasma dispersion functions is possible, as discussed in §4.4. The rela-
tivistic plasma dispersion function chosen here is [8]:

T (z, ρ) =
∫ 1

−1

dβ
e−ργ

β − z , (4.3.1)

with γ = (1 − β2)−1/2. Properties of T (z, ρ) and of other relativistic plasma
dispersion functions are discussed in §4.4.

4.3.2 Derivation by the forward-scattering method

The forward-scattering method leads to the expressions (4.1.17) and (4.1.18)
for ΠL(k) and ΠL(k), respectively, and to (4.1.19), (4.1.20) after performing
the angular integrals for an isotropic distribution. For a Jüttner distribu-
tion, the remaining integral may be evaluated in terms of T (z, ρ) and of its
derivative T ′(z, ρ) = ∂T (z, ρ)/∂z. The logarithmic terms in (4.1.19), (4.1.20)
are rewritten by partial integration, and the β-integrals are extended from
0 ≤ β ≤ 1 to −1 ≤ β ≤ 1, so that all the denominators can be written in
the form 1/(β − z), as in (4.3.1). After substituting the Jüttner distribution
(4.2.1) into (4.1.17) and (4.1.18), the integrals differ from the form (4.3.1)
only in that they contain additional powers of β and γ in the integrand. This
reduces (4.1.19), (4.1.20) to sums of integrals of the form (4.3.1) with addi-
tional powers of β and γ in the integrand. Such integrals with odd powers of
β in the numerator are evaluated by writing them as an even power of β times
z+(β− z); the term β− z cancels with the denominator in (4.3.1), leading to
an integral that can be evaluated in terms of Macdonald functions. The even
powers of β are rewritten in terms of β2 = 1 − 1/γ2. The resulting integrals
are related to that for T (z, ρ) by differentiating with respect to ρ:

∂nT (z, ρ)
∂ρn

= (−1)n

∫ 1

−1

dβ γn e
−ργ

β − z . (4.3.2)
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For n < 0 one uses 1/γ2 = 1− [(β− z)− z]2 to reexpress the integral in terms
of standard integrals and integrals like (4.3.2) with positive n. The derivatives
with respect to ρ in (4.3.2) are evaluated using the identities

z
∂T (z, ρ)
∂ρ

= 2K1(ρ) +
(1 − z2)
ρ

T ′(z, ρ), (4.3.3)

(1 − z2) ∂
2T (z, ρ)
∂ρ2

= 2zK0(ρ) + T (z, ρ), (4.3.4)

with T ′(z, ρ) = ∂T (z, ρ)/∂z. The third derivative follows by differentiating
(4.3.4) and using (4.3.3), and so on. In this way, the integrals in (4.1.17),
(4.1.18) for ΠL(k), ΠL(k) can all be expressed in terms of T (z, ρ), T ′(z, ρ).

This procedure leads to the following forms for ΠL(k), ΠT (k):

ΠL(k) = ε0ω2
p

z2

1 − z2

{
ρ

2K2(ρ)

[
2K0(ρ) + zT (z, ρ)

]

+
1 − z2
ρK2(ρ)

[
zT (z, ρ)− (1 − z2)T ′(z, ρ)

]}
, (4.3.5)

ΠT (k) = −ε0ω2
p

{
K1(ρ)
K2(ρ)

− 1 − z2
2ρK2(ρ)

[
zT (z, ρ)− (1 − z2)T ′(z, ρ)

]}
, (4.3.6)

respectively, with z = ω/|k| in the rest frame.

4.3.3 Derivation by the Vlasov approach

An alternative starting point is the form (4.1.2) derived using the Vlasov
approach, which leads to the expressions (4.1.23), (4.1.24) for ΠL(k), ΠT (k),
respectively, and to (4.1.25), (4.1.26) after the angular integrals are performed.
One has ∂f(p)/∂ε = −(ρ/m)f(p) for the Jüttner distribution (4.2.1), and for
the form (4.2.2) one has ∂F (p)/∂pũ = −(ρ/m)F (p). In the Vlasov approach,
it is convenient to write the remaining integral in terms of the variable χ,
defined by (4.2.4). One has

ΠL(k) = ε0ω2
p

[
ρz2 − ρ2z3

2K2(ρ)

∫ ∞

0

dχ sinhχ cosh2 χ

×e−ρ cosh χ ln
(
z coshχ+ sinhχ
z coshχ− sinhχ

)]
, (4.3.7)

ΠT (k) = ε0ω2
p

[
ρz2

2
− ρ2z

2K2(ρ)

∫ ∞

0

dχ sinhχ 1
2 [z2 cosh2 χ− sinh2 χ]

×e−ρ cosh χ ln
(
z coshχ+ sinhχ
z coshχ− sinhχ

)]
. (4.3.8)
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4.3.4 Silin’s method

An alternative procedure for calculating the linear response tensor is due to
Silin [6, 9]. The idea is to impose the causal condition, take the imaginary
parts, evaluate these explicitly, and use the Kramers-Kronig relations to de-
termine the real parts. This procedure has a technical weakness in that it does
not fully determine the real parts, but nevertheless it is instructive to pursue
it.

The imaginary parts of the longitudinal and transverse response functions
follow by imposing the causal condition on (4.1.23), (4.1.24) and retaining
only the semiresidues. This gives

ImΠL(k) = πq2
(kũ)3

(kũ)2 − k2

∫
d4p

(2π)4
(uũ)2 δ(ku)

∂F (p)
∂pũ

, (4.3.9)

ImΠT (k) =
πq2

2
kũ

∫
d4p

(2π)4

(
1 +

k2 (uũ)2

(kũ)2 − k2

)
δ(ku)

∂F (p)
∂pũ

. (4.3.10)

The relations (4.3.9), (4.3.10) apply to an arbitrary isotropic distribution. On
inserting the Jüttner distribution (4.2.2) they become

ImΠL(k) = −πq2ρ (kũ)3

[(kũ)2 − k2]

∫
d4p

(2π)4
(uũ)2 δ(ku)F (p), (4.3.11)

ImΠT (k) = −πq
2ρ

2
kũ

∫
d4p

(2π)4

(
1 +

k2 (uũ)2

(kũ)2 − k2

)
δ(ku)F (p), (4.3.12)

respectively. It is convenient to choose the four variables of integration to be
p2, ku, uũ and an azimuthal angle. The azimuthal angle does not appear in
the integrand and integration over it gives 2π. The integrals over p2 and ku
are performed trivially over the δ-functions, and these require uũ ≥ γ0 =
(1 − z2)−1/2. On writing γ = uũ, (4.3.11), (4.3.12) become

ImΠL(k) =
πε0ω

2
pρ

2z3

2K2(ρ)

∫ ∞

γ0

dγ γ2 e−ργ

= −
πε0ω

2
pz

3

K2(ρ)

(
1
2ργ

2
0 + γ0 +

1
ρ

)
e−ργ0 , (4.3.13)

ImΠT (k) =
πε0ω

2
pρ

2z

4K2(ρ)

∫ ∞

γ0

dγ

(
1 − γ

2

γ2
0

)
e−ργ

= −
πε0ω

2
pz

2K2(ρ)

(
1
γ0

+
1
ργ2

0

)
e−ργ0 , (4.3.14)

respectively. These results apply for z2 < 1; the imaginary parts are zero for
z2 ≥ 1.

Silin’s method is to use the Kramers-Kronig relation (1.4.16) to construct
the full response tensor from its antihermitian part. However, there is an un-
determined constant of integration; more specifically, the result is determined
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only to within an arbitrary function whose Hilbert transform is zero. Denot-
ing by k′ the 4-vector k evaluated at phase speed z = β, the Kramers-Kronig
relations (1.4.16) imply

Π(L,T )(k) =
1
π
℘
∫ 1

−1

dβ

β − (z + i0)
ImΠ(L,T )(k′). (4.3.15)

Applying (4.3.15) to (4.3.13), (4.3.14) gives

ΠL(k) = −ε0ω2
p

z3

K2(ρ)

∫ 1

−1

dβ

β − z

(
1
2ργ

2 + γ +
1
ρ

)
e−ργ + FL(z), (4.3.16)

ΠT (k) = −ε0ω2
p

z

2K2(ρ)

∫ 1

−1

dβ

β − z

(
1
γ

+
1
ργ2

)
e−ργ + FT (z), (4.3.17)

respectively. The Landau prescription z → z + i0 is implicit in (4.3.16),
(4.3.17). The expressions (4.3.16), (4.3.17) are equivalent to Silin’s results
except for the additional functions FL(z), FT (z) which cannot be deter-
mined by the method. These additional functions are arbitrary apart from
the requirement that their Hilbert transform be zero. Functions satisfying
this requirement include powers of z.

One can compare (4.3.16), (4.3.17) with (4.3.7), (4.3.8) by partially inte-
grating in (4.3.16), (4.3.17) to obtain logarithms of the same form as in (4.3.7),
(4.3.8). The results for ΠL(k), ΠT (k) agree for the logarithmic terms, but the
non-logarithmic terms in (4.3.7), (4.3.8) are not reproduced. Hence one needs
to make the identifications

FL(z) = ε0ω2
p ρz

2, FT (z) = 1
2ε0ω

2
p ρz

2, (4.3.18)

to obtain consistency.
It may be concluded that Silin’s method gives the terms that involve the

relativistic plasma dispersion functions (4.3.5), (4.3.6) and (4.3.7), (4.3.8), but
that there are additional undetermined terms, denoted here by FL(z), FT (z).
These additional terms can be determined only by a separate calculation. This
limits the usefulness of the application of the Kramers-Kronig relations in this
context.

4.3.5 Trubnikov’s integral

A fourth method of calculation of ΠL(k), ΠT (k) for a relativistic thermal
distribution follows by using a method developed by Trubnikov [7]. Trubnikov
used this method to evaluate the response tensor for a relativistic thermal
plasma in the presence of a magnetostatic field, and noted the unmagnetized
limit as a special case. The procedure outlined below is a covariant version of
Trubnikov’s method for an unmagnetized, relativistic, thermal electron gas. It
is instructive to apply the method to both the form (4.1.1), which involves no
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derivatives of F (p), and to the form (4.1.2), in which the derivative ∂F (p)/∂pα

appears. The latter form is discussed first.
Starting from (4.1.2) and inserting the distribution function (4.2.2), the

derivative gives ∂F (p)/∂pα = −ρũαF (p)/m. Trubnikov’s procedure involves
expressing all dependence on u in exponential form, and evaluating the re-
sulting integral in terms of the integral representation (4.2.5) for Macdonald
functions. An important step is the integral representation of the denominator
with the causal condition imposed on it. According to (1.3.14) one has

1
ku+ i0

= −i
∫ ∞

0

dξ eiku ξ,
1

(ku+ i0)2
= −

∫ ∞

0

dξ ξ eiku ξ. (4.3.19)

The powers of the 4-velocity are written as

uµ =
∂esu

∂sµ

∣∣∣∣
s=0

, uµuν =
∂2e(s+s′)u

∂sµ∂s′ν

∣∣∣∣
s=0,s′=0

. (4.3.20)

One needs to evaluate an integral of the form

I(ρ, ξ, s+ s′) =
(2π)3nρ

2πm2K2(ρ)

∫
d4p

(2π)4
δ(p2 −m2) e−[ρũ−ikξ−(s+s′)]u. (4.3.21)

The steps involved in evaluating the integral (4.3.21) are: first integrate over
p0 = mγ using the δ-function, write the exponent in terms of γ, p = mγβ and
the angle between β and the 3-vector −ikξ − (s + s′), introduce the variable
χ defined by (4.2.4), and carry out the angular integrals. The χ-integral is
evaluated using the integral representation (4.2.5) for K0(x) with a complex
argument, and its derivative K ′

0(x) = −K1(x). These steps lead to

I(ρ, ξ, 0) =
nρ

K2(ρ)
K1

(
r(ξ)

)
r(ξ)

, (4.3.22)

where the function r(ξ) is evaluated according to

r(ξ) =
[
(ρ− iωξ)2 + |k|2ξ2)

]1/2
, (4.3.23)

where the final expression applies in the rest frame of the plasma for s = 0
s′ = 0. The response tensor (4.1.2) reduces to

Πµν(k) = −q
2ρ

m

[
nũµũν − ikũ

∫ ∞

0

dξ ûµûµI(ρ, ξ)
]
, (4.3.24)

where ûµ are differential operators that involve differentiating with respect to
sµ before setting s = 0. The relevant derivatives, which are evaluated using
(4.2.12), are
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ûµK1

(
r(ξ)

)
r(ξ)

= aµ(ξ)
K2

(
r(ξ)

)
r2(ξ)

,

ûµûµK1

(
r(ξ)

)
r(ξ)

= −gµν K2

(
r(ξ)

)
r2(ξ)

+ aµ(ξ)aν(ξ)
K3

(
r(ξ)

)
r3(ξ)

,

aµ(ξ) = ρũµ − ikµξ. (4.3.25)

Then (4.3.24) gives

Πµν(k) = −q
2nρ

m

{
ũµũν − i kũ ρ

K2(ρ)

∫ ∞

0

dξ

[
gµν K2

(
r(ξ)

)
r2(ξ)

−aµ(ξ)aν(ξ)
K3

(
r(ξ)

)
r3(ξ)

]}
, (4.3.26)

which is a covariant generalization of Trubnikov’s tensor for an unmagnetized
plasma.

Two difficulties arise with (4.3.26). First, it does not obviously satisfy the
charge-continuity and gauge-invariance relations (1.4.8). Second, although it
applies to an isotropic medium, it cannot obviously be written in the form
(4.1.14) that applies to any isotropic medium. These difficulties are overcome
by noting that the functions in (4.3.26) satisfy certain integral identities of
the form

f(0)
Kν(ρ)
ρν

+
∫ ∞

0

dξ

{
df(ξ)
dξ

Kν

(
r(ξ)

)
rν(ξ)

+ if(ξ) ka(ξ)
Kν+1

(
r(ξ)

)
rν+1(ξ)

}
= 0,

(4.3.27)
with arbitrary f(ξ) and ν, and with ka(ξ) = ρ kũ− ik2ξ. The identity (4.3.27)
is established by a partial integration using (4.2.12) and r2(ξ) = aµ(ξ)aµ(ξ),
which implies ∂r(ξ)/∂ξ = −ika(ξ)/r(ξ).

The foregoing derivation involves applying Trubnikov’s method to the
Vlasov form for the response tensor, and an alternative expression for Πµν(k)
is obtained by applying the method to the forward-scattering form (4.1.1) of
the response tensor. The first step is to rewrite the denominators 1/ku and
1/(ku)2 in (4.1.1) in terms of an integral over ξ using (4.3.19). There are
several alternatives: one involves rewriting the integrand in terms of a numer-
ator which is a homogeneous quadratic form in p divided by the denominator
(ku)2. After inserting the specific distribution function (4.2.2), the integral
over d4p is performed using (4.3.25). This leads to the following expression:

Πµν(k) =
q2nρ

mK2(ρ)

∫ ∞

0

dξ ξ

{
− 2k2

(
gµν − k

µkν

k2

)
K2

(
r(ξ)

)
r2(ξ)(

ka(ξ)
)2
aµν
(
k, a(ξ)

)K3

(
r(ξ)

)
r3(ξ)

}
, (4.3.28)

with aµν(k, u) given by (4.1.1). To establish the equivalence of (4.3.28) and
(4.3.26) rewrite the term proportional to K2

(
r(ξ)

)
/r2(ξ) in (4.3.28) in terms
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of K3

(
r(ξ)

)
/r3(ξ) using (4.3.27). This gives

Πµν(k) = −i q
2nρ2kũ

mK2(ρ)

∫ ∞

0

dξ ξ
K3

(
r(ξ)

)
r3(ξ)

×
[
k2ξ

(
gµν − k

µkν

k2

)
+ iρ kũ aµν(k, ũ)

]
. (4.3.29)

The form (4.3.29) manifestly satisfies the charge-continuity and gauge-
invariance conditions.

4.3.6 Longitudinal and transverse parts

Explicit expressions for the longitudinal and transverse parts of the response
tensor in terms of Trubnikov functions may be obtained in several ways. One
may separate any of the expressions (4.3.26), (4.3.28) or (4.3.29), into lon-
gitudinal and transverse parts using projection operators, as in (1.6.16), or
one may apply Trubnikov’s method to the expressions (4.1.17), (4.1.18) for
the longitudinal and transverse parts for an arbitrary isotropic distribution
function. The form (4.3.29) is particularly convenient for separating into lon-
gitudinal and transverse parts: using the definitions (1.6.7) and (1.6.9) of
Lµν(k, u), T µν(k, u) as linear combinations of aµν(k, u), gµν − kµkν/k2, and
rewriting the particular linear combination of these terms in (4.3.29) gives
the standard form (4.1.14) for the separation into longitudinal and transverse
parts directly. The various methods for separation lead to qualitatively differ-
ent expressions, and these may be shown to be equivalent by using identities
implies by (4.3.27).

In writing down explicit expressions for ΠL(k), ΠT (k), it is convenient to
introduce the variable z which, in the rest frame, is equal to the phase speed
ω/|k|. The argument of the Macdonald functions becomes

r(ξ) =
(
ρ2 − 2iρ kũ ξ +

1 − z2
z2

(kũ)2ξ2
)1/2

. (4.3.30)

Of the various alternatives the form (4.3.28) is most closely analogous to Trub-
nikov’s original result, and only this form is used below. For the longitudinal
and transverse parts one obtains

ΠL(k) = iε0ω2
p

ρ2kũ

K2(ρ)

∫ ∞

0

dξ

[
K2

(
r(ξ)

)
r2(ξ)

− (kũ)2ξ2

z2
K3

(
r(ξ)

)
r3(ξ)

]
. (4.3.31)

ΠT (k) = iε0ω2
p

ρ2kũ

K2(ρ)

∫ ∞

0

dξ
K2

(
r(ξ)

)
r2(ξ)

, (4.3.32)

respectively. The equivalence of Trubnikov’s forms (4.3.31), (4.3.32) and the
forms (4.3.5), (4.3.5) follows from results derived for Trubnikov functions in
§4.4.
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Trubnikov’s forms are convenient for making approximations for weakly
relativistic and ultrarelativistic temperatures. In the weakly relativistic limit,
one uses the asymptotic limit, cf. (4.2.14),

K2

(
r(ξ)

)
≈ K3

(
r(ξ)

)
≈
(

π

2r(ξ)

)1/2

e−r(ξ). (4.3.33)

In the ultrarelativistic limit, one uses the small-argument limit, cf. (4.2.13),

K2

(
r(ξ)

)
≈ 2
r2(ξ)

− 1
2

+ · · · , K3

(
r(ξ)

)
≈ 8
r3(ξ)

− 1
r(ξ)

+ · · · . (4.3.34)

Limiting cases of these and related plasma dispersion functions are discussed
in §4.4.
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4.4 Relativistic plasma dispersion functions (RPDFs)

The properties of the relativistic plasma dispersion functions for a relativistic
thermal distribution (4.2.1) are discussed in this section.

4.4.1 Definitions of plasma dispersion functions

The relativistic plasma dispersion function chosen for most purposes here is
the function T (z, ρ) defined by (4.3.1). The definition (4.3.1) has the alterna-
tive forms

T (z, ρ) = −ρ
∫ ∞

0

dχ sinhχ e−ρ cosh χ ln
(
z + tanhχ
z − tanhχ

)

= 2z
∫ ∞

0

dχ
e−ρ cosh χ

(1 − z2) cosh2 χ− 1

= − 2ρ
1 − z2

∫ z

dζ
K1(ρR)
R

. (4.4.1)

The first form follows directly from (4.3.1) with the variable χ defined by
(4.2.4), and the second form is related to it by a partial integration. The third
form is the real part of a Trubnikov function, cf. (4.4.9) and (4.4.39) below.

The function T (z, ρ) satisfies a set of partial differential equations that
includes (4.3.3) and (4.3.4). The full set is [8]

(1 − z2) ∂
2

∂ρ2
T (z, ρ) = 2zK0(ρ) + T (z, ρ), (4.4.2)

z(1 − z2)3 T ′′(z, ρ) − (1 − z2)2(1 + 2z2)T ′(z, ρ) − ρ2z3T (z, ρ)
= 2z2ρ2K0(ρ) + 2(1 − z2)ρK1(ρ), (4.4.3)

z
∂

∂ρ
T (z, ρ) = 2K1(ρ) +

(1 − z2)
ρ

T ′(z, ρ), (4.4.4)

with T ′(z, ρ) = ∂T (z, ρ)/∂z, T ′′(z, ρ) = ∂2T (z, ρ)/∂z2.

4.4.2 Real and imaginary parts of Trubnikov functions

The third integral form (4.4.1) for T (z, ρ) involves a Trubnikov function, which
is an integral over a MacDonald function with complex arguments. For real
k the Trubnikov functions are separated into real and imaginary parts by
deforming the contour of integration so that the argument of the MacDonald
function is always real. On writing kũ ξ = ρ(x + iy), where x and y are real,
(4.3.30) gives

r(ξ) = ρ[1 − 2i(x+ iy) + (x2 + 2ixy − y2)(1 − z2)/z2]1/2. (4.4.5)
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x

y

y0

0

Fig. 4.1. The contour of ξ-integration (kũ ξ/ρ = x+ iy) is deformed from one along
the x-axis from 0 to ∞ to, for z < 1, a contour along the y-axis from 0 to y0 and
thence parallel to the x-axis to ∞. For z > 1, the contour is deformed to one along
the y-axis to ∞.

As illustrated in Fig. 4.1, for z < 1 the appropriate contour, along which r2(ξ)
is real, is along the imaginary axis (x = 0) from y = 0 to y = y0 = z2/(1−z2),
at which point the coefficient of ix vanishes in (4.4.5), and the contour is
parallel to the real axis, at y = y0, from x = 0 to x = ∞. The zeros of r2(ξ)
lie outside the rectangular region bounded by the old and new contours, so
that the value of the integral is unchanged by deforming the contour in this
way. For z → 1 one has y0 → ∞ and this contour reduces to an integral along
the imaginary axis. For z > 1 there are no poles in the quadrant Re z > 0,
Im z > 0, and the contour of integration may be rotated through π/2 so that
it lies entirely along the imaginary axis for all z ≥ 1.

With this change in the contour of integration, it is convenient to make a
change of the variable of integration from y to ζ by writing

y =
z(z − ζ)
1 − z2 = y0−

zζ

1 − z2 , ζ = z− y(1 − z2)
z

, y0 =
ρz2

1 − z2 . (4.4.6)

The specific Trubnikov integrals that are required here reduce as follows:

ikũ

∫ ∞

0

dξ
Kν(r(ξ))
rν(ξ)

= − zρ

1 − z2
∫ z

0

dζ
Kν(ρR)
ρνRν

+iH(1 − z2)ρ
∫ ∞

0

dx
Kν(ρ )
ρν ν

,

i(kũ)3
∫ ∞

0

dξ ξ2
Kν(r(ξ))
rν(ξ)

=
z3ρ3

(1 − z2)3
∫ z

0

dζ (z − ζ)2Kν(ρR)
ρνRν

+iH(1 − z2)ρ3
∫ ∞

0

dx (x2 + 2ixy0 − y20)
Kν(ρ )
ρν ν

,

R2 =
1 − ζ2
1 − z2 ,  2 =

1
1 − z2 +

x2(1 − z2)
z2

. (4.4.7)

The step function, H(1−z2), is included because the integral along the x-axis
contributes only for z2 < 1, cf. Fig. 4.1. The x-integral in (4.4.7) may be eval-
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Fig. 4.2. Plots of −T (z, ρ) as a function of z showing how the real part (solid line)
and the magnitude of the imaginary part (dashed line) vary as the temperature from
mildly to highly relativistic: (a) ρ = 5, (b) ρ = 1, (c) ρ = 0.5, (d) ρ = 0.1.

uated in closed form using standard integrals: the imaginary parts reproduce
the results derived much more simply by imposing the causal condition on
the original functions, such as in the derivation of (4.3.13), (4.3.14). A related
integral that contributes to the real part arises from the term involving 2ixy0
in (4.4.7). This integral is of the form

ρ2
∫ ∞

0

dxx
Kn(ρ )
ρn n

= z2γ2
0

Kn−1(ργ0)
ρn−1γn−1

0

. (4.4.8)

The results (4.4.7), (4.4.8) apply for z < 1.
By deforming the contour of integration in this way, (4.4.4) gives [8]

T (z, ρ) =

⎧⎪⎪⎨
⎪⎪⎩

− 2ρ
1 − z2

∫ z

0

dζ
K1(ρR)
R

+ iπ e−ργ0 for z < 1,

2ρ
1 − z2

∫ ∞

z

dζ
K1(ρR)
R

for z > 1,
(4.4.9)

with R = [(1−ζ2)/(1−z2)]1/2. The final form in (4.4.1) is to be interpreted as
in (4.4.9): for z < 1 the lower limit of integration is ζ = 0 and the imaginary
term is nonzero, and for z > 1 the unspecified limit of integration is ζ = ∞
and the imaginary part is zero.
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4.4.3 Properties of T (z, ρ) and T ′(z, ρ)

Some illustrative plots of T (z, ρ) and T ′(z, ρ) as functions of z for selective
values of ρ are presented in Fig. 4.2 and Fig. 4.3, respectively. The function
T (z, ρ) is negative throughout its range, its magnitude increases linearly with
z for small z, and decreases as 1/z for z → ∞. There is a single maximum
in the real part of −T (z, ρ) in the region z < 1; for ρ∼<1 one has 1 − z2 ∼ ρ,
−T (z, ρ) ∼ 1/ρ at the peak. The function T ′(z, ρ) is negative at z = 0 and
becomes increasingly negative as z increases until it reaches a minimum; it
then increases, passing through zero at the value of z at which −T (z, ρ) has
its maximum, increases to a maximum, and then decreases monotonically for
larger z. The peaks in T ′(z, ρ) and −T (z, ρ) become more pronounced as ρ∼<1
decreases, with T ′(z, ρ) being much more sharply peaked than −T (z, ρ). The
peaks occur at phase speeds z < 1 related to the root mean square speed,
which is z ∼ 1/ρ1/2 in the nonrelativistic regime, ρ � 1, and is 1 − z ∼ ρ in
the ultrarelativistic regime ρ� 1.

Expansions of T (z, ρ) are available for z2 � 1, z2 � 1, and |1 − z2| � 1.
For these cases, the integrand in the second form in (4.4.1) is expanded in
powers of z2 coth2 χ, z−2 tanh2 χ and (1− z2) cosh2 χ, respectively. There are
restrictions on the convergence of the expansions which depend on the value
of ρ. In a nonrelativistic plasma, ρ � 1, the integral is dominated by the
range χ∼<1/ρ1/2. In the ultrarelativistic limit, ρ � 1, the effective range of
integration extends to χ∼< ln(2/ρ). The expansions are as follows.
(i) For z2 � 1 and ρ∼<1, or for ρz2 � 1 and ρ� 1, expansion of the first form
of (4.4.1) gives

T (z, ρ) =
∞∑

n=0

anz
2n+1 + iπe−ργ0 , (4.4.10)

an = 2
∫ ∞

0

dχ
cosh2n χ

sinh2n+2 χ
e−ρ cosh χ

=
n∑

k=0

2
(
n

k

)
(−)n−k+1Γ (1

2 )
2n−k+1Γ (n− k + 1 + 1

2 )
ρn−k+1Kn−k+1(ρ), (4.4.11)

where the integral is evaluated using (4.2.7), and with γ0 = (1− z2)−1/2. The
first two specific values are a0 = −2ρK1(ρ), a1 = (2/3)[ρ2K0(ρ) − ρK1(ρ)].
(ii) For z2 � 1 expansion of either the first or second forms of (4.4.1) are
straightforward; the resulting expressions for the coefficients are related by a
partial integration. The coefficients are somewhat simpler for the expansion
of the second form of (4.4.1). This gives

T (z, ρ) =
∞∑

n=0

bnz
−2n−1, (4.4.12)
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Fig. 4.3. Plots of T ′(z, ρ) as a function of z showing how the real part (solid line)
and the magnitude of the imaginary part (dashed line) vary as the temperature from
mildly to highly relativistic: (a) ρ = 5, (b) ρ = 1, (c) ρ = 0.5, (d) ρ = 0.1. In order
to illustrate the extremely sharp peak the range of z is severely restricted in (c), (d).

bn = −2
∫ ∞

0

dχ
e−ρ cosh χ

cosh2 χ
tanh2n χ

= 2
n∑

k=0

(−)n+k+1

(
n

k

)
Ki2(n+k+1)(ρ), (4.4.13)

where the integral (4.2.17) is used. The coefficients are related by [8]

b0 = −2Ki2(ρ), b1 = − 1
3 [ρ2K0(ρ) − ρK1(ρ)] + 1

6 (3 − ρ2)b0,

b2 = − 1
10 ρK1(ρ) − 3

10 b0 + 1
20 (27 − ρ2)b1,

2n(2n+ 1)bn − [3(2n− 1)2 − ρ2]bn−1

+6(n− 1)(2n− 3)bn−2 − (2n− 3)(2n− 5)bn−3 = 0 n > 2. (4.4.14)

The validity of the expansion (4.4.14) extends to z2 < 1 for nonrelativistic
temperatures, ρ� 1. For ρ� 1 the expansion is valid for ρz2∼>3.
(iii) As asymptotic expansion about z = ±1 gives [8]

T (z, ρ) ∼
∑
n=0

c±n (z ∓ 1)n + iσπe−ργ0 , (4.4.15)
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Fig. 4.4. Plots of ΦL(z, ρ) for the same values as in Figs. 4.2 and 4.3.

c±0 = ∓2K0(ρ), c±n = ∓
(
±1

2

)n−2 n∑
k=1

(
n− 1
k − 1

)
K2k(ρ). (4.4.16)

The imaginary part in (4.4.15) has three possible values of σ. For real z,
one has σ = 0 for |z| > 1 and σ = 1 for |z| < 1; for complex z, one has
σ = 0 for Im z > 0 and σ = 2 for Im z < 0. The discontinuity across the
real axis is an example of the Stokes phenomenon which also occurs in the
nonrelativistic plasma dispersion function discussed below. For the relativistic
plasma dispersion function this discontinuity applies only for z < 1, that is,
for phase speeds less than the speed of light. The radius of convergence of the
expansion (4.4.15) shrinks to zero in the ultrarelativistic limit ρ→ 0.

4.4.4 Longitundinal and transverse response functions

The longitudinal and transverse parts of the response tensor may themselves
be used to define relativistic plasma dispersion functions by normalizing them
appropriately. It is convenient to write

ΦL(z, ρ) = −Π
L(k)
ε0ω2

p

, ΦT (z, ρ) = −Π
T (k)
ε0ω2

p

. (4.4.17)

Three versions of the real parts are give here. The expressions (4.3.5), (4.3.6)
give
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ΦL(z, ρ) = − z2

1 − z2

{
ρ

2K2(ρ)

[
2K0(ρ) + zT (z, ρ)

]

+
1 − z2
ρK2(ρ)

[
zT (z, ρ)− (1 − z2)T ′(z, ρ)

]}
, (4.4.18)

ΦT (z, ρ) =
K1(ρ)
K2(ρ)

− 1 − z2
2ρK2(ρ)

[
zT (z, ρ)− (1 − z2)T ′(z, ρ)

]
. (4.4.19)

The expressions (4.3.7), (4.3.8) in terms of the integral over χ of a logarithm
function give

ΦL(z, ρ) = −ρz2 +
ρ2z3

2K2(ρ)

∫ ∞

0

dχ sinhχ cosh2 χ

× e−ρ cosh χ ln
(
z coshχ+ sinhχ
z coshχ− sinhχ

)
, (4.4.20)

ΦT (z, ρ) = −ρz
2

2
+

ρ2z

2K2(ρ)

∫ ∞

0

dχ sinhχ 1
2 [z2 cosh2 χ− sinh2 χ]

× e−ρ cosh χ ln
(
z coshχ+ sinhχ
z coshχ− sinhχ

)
. (4.4.21)

The expressions (4.3.31), (4.3.32) in terms of Trubnikov functions, rewritten
in terms of real integrals as in (4.4.9), give

ΦL(z, ρ) =
z

1 − z2
ρ2

K2(ρ)

{∫ z

dζ

[
K2(ρR)
ρR2

+
(z − ζ)2
(1 − z2)2

K3(ρR)
R3

]
−H(1 − z2) 2z

ρ
K2(ργ0)

}
, (4.4.22)

ΦT (z, ρ) =
z

1 − z2
ρ2

K2(ρ)

∫ z

dζ
K2(ρR)
ρR2

, (4.4.23)

where the unspecified limit of integration is ζ = 0 for z < 1 and ζ = ∞
for z > 1, cf. (4.4.9), and the extra term involving the step function arises
from (4.4.8). These relativistic plasma dispersion functions are illustrated in
Fig. 4.4 and Fig. 4.5 for the same values of the parameters z and ρ as are
chosen in Fig. 4.2 and Fig. 4.3. The imaginary parts of these functions are
given by (4.3.13), (4.3.14).

4.4.5 Expansion for z2 � 1

On expanding for small phase speeds, z � 1, the leading term in ΦL(z, ρ)
is the term −ρz2 (4.4.20). This approximation corresponds to µ0Π

L(k) =
ρω2

pω
2/|k|2 = ω2/|k|2λ2

D, where λD is the Debye length. This result applies in
both a nonrelativistic and a relativistic plasma. The leading term in the real
part ΦT (z, ρ) for small z is smaller than the imaginary part, which is given
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Fig. 4.5. Plots of ΦT (z, ρ) for the same values as in Figs. 4.2–4.4.

by (4.3.14), with γ0 ≈ 1 for z2 � 1. Thus the leading terms in an expansion
for small z are

ΦL(z, ρ) ≈ −ρz2, ΦT (z, ρ) ≈ iπz
(

1 + ρ
ρ

)
e−ρ

2K2(ρ)
. (4.4.24)

4.4.6 Expansion for z2 � 1

The expansion of ΦL(z, ρ), ΦT (z, ρ) for z2 � 1 is most conveniently carried
out by expanding the logarithms in the (4.4.20), (4.4.21). This gives

ΦL(z, ρ) =
∞∑

n=1

b′n
z2n−2

, ΦT (z, ρ) =
∞∑

n=1

b′n
(2n− 1)z2n−2

, (4.4.25)

b′n =
ρ2

(2n+ 1)K2(ρ)

∫ ∞

0

dχ tanh2n χ e−ρ cosh χ =
ρ 〈β2n〉
2n+ 1

, (4.4.26)

where the definition (4.2.19) is used. The first two coefficients are given by
(4.2.25). The validity of (4.4.25) is restricted to |z2|∼>3b′1 [10].

At z = 1 one finds

ΦL(1, ρ) =
K1(ρ)
K2(ρ)

+
2K0(ρ)
ρK2(ρ)

≈
{

1 +
1
2ρ

for ρ� 1,

0.616 + ln(1/ρ) for ρ� 1,
(4.4.27)
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ΦT (1, ρ) =
K1(ρ)
K2(ρ)

≈

⎧⎪⎨
⎪⎩

1 − 3
2ρ

for ρ� 1,
ρ

2
for ρ� 1.

(4.4.28)

One may also write ΦT (1, ρ) = ω2
p0/ω

2
p, where ωp0 is the proper plasma fre-

quency, cf. (4.1.13), (4.2.3). The expansion of ΦL(z, ρ), ΦT (z, ρ) around the
point z = 1 is given by inserting the expansion (4.4.15) into (4.4.18), (4.4.19).

4.4.7 Weakly relativistic limit

The weakly relativistic limit corresponds to ρ � 1. The major simplifying
assumption in this case is to replace the Macdonald functions by their asymp-
totic limit (4.2.14). The final form in (4.4.1) becomes

T (z, ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− (2πρ)1/2

1 − z2
∫ z

0

dζ
e−ρR

R3/2
+ iπ e−ργ0 for z < 1,

(2πρ)1/2

1 − z2
∫ ∞

z

dζ
e−ρR

R3/2
for z > 1,

(4.4.29)

with R = [(1 − ζ2)/(1 − z2)]1/2, and where the imaginary part is in its exact
form.

4.4.8 Nonrelativistic limit

The nonrelativistic limit corresponds to ρ � 1, as in the weakly relativistic
approximation, but in addition the speed of light is formally set to infinity.
Hence the nonrelativistic approximation is non-uniform in z, and is strictly
valid only for phase speed much less than the speed of light, that is, for z � 1.

The expansion (4.4.10) for z2 � 1 is valid only for z2 � 〈β2〉 = 〈tanh2 χ〉,
β = |v|, where the angular brackets denote an appropriate mean value. This
average 〈β2〉 is given by (4.2.25). In the nonrelativistic limit (ρ� 1) one has
〈β2〉 ≈ 3/ρ and in the ultrarelativistic limit (ρ � 1) one has 〈β2〉 ≈ 1 − ρ2.
Thus the expansion for small z requires ρz2 � 1 in the nonrelativistic limit.
This leaves the range ρ−1 � z2∼<1 where a further expansion is required. For
this range, one uses an expansion of the second form in (4.4.1) in powers of
z−2(1 − z2) sinh2 χ.

The nonrelativistic approximation to T (z, ρ) follows by expanding γ ≈
1 + β2/2 in the exponent in (4.3.1). One finds

T (z, ρ) ≈ π1/2 e−ρ Z
(
(ρ/2)1/2z

)
, (4.4.30)

where Z(z) is the nonrelativistic plasma dispersion function (1.7.13).
Plots of the exact form of −T (z, ρ) and of its approximation (4.4.30) are

indistinguishable for ρ∼>50 (T∼<108 K). The exact and approximate functions
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Fig. 4.6. (a) The function −T (z, ρ) is compared with its nonrelativistic approx-
imation (4.4.30) for ρ = 5; (b) T (z, ρ) becomes increasingly more sharply peaked
in comparison with its nonrelativistic counterpart as ρ decreases, as illustrated for
ρ = 0.5.

are shown for ρ = 5 and 0.5 in Fig. 4.6. Compared with the nonrelativistic
approximation, the relativistically correct function has a larger peak that
becomes increasingly pronounced with decreasing ρ∼<1. As already noted, the
phase speed at which the peak occurs is related to the relativistically correct
root mean square speed, and only in the nonrelativistic approximation does
this reduce to z ∼ 1/ρ1/2.

4.4.9 Ultrarelativistic limit

The ultrarelativistic limit corresponds to ρ → 0. The Trubnikov forms
(4.4.22), (4.4.23) are convenient in this limit, where the ξ-integrals are dom-
inated by the region of small ξ, with the Macdonald functions, Kn(r) ≈
2n−1(n − 1)!/rn, dominated by the leading terms in the expansion for small
argument, cf. (4.2.13). The corresponding approximation to T (z, ρ), e.g., in
the form (4.4.9), reduces to

T (z, ρ) = − ln
∣∣∣∣1 + z
1 − z

∣∣∣∣+ iπH(1 − z) e−ργ0 , (4.4.31)

where H(x) is the step function (1.3.13). The exponential term exp(−ργ0),
with γ0 = (1−z2)−1/2, is retained in the imaginary part of (4.4.31), although it
should be approximated by unity for consistency in retaining only the leading
term in the expansion in ρ. The real part of (4.4.31) is also obtained simply
by carrying out the integral in (4.3.1) for ρ = 0.

4.4.10 Generalized Trubnikov functions

Another class of relativistic plasma dispersion functions appear in Trubnikov’s
form for the response functions, cf. (4.3.28), (4.3.29). A general class of Trub-
nikov functions is defined by writing
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tnν (z, ρ) = (kũ)n+1

∫ ∞

0

dξ ξn
Kν

(
r(ξ)

)
rν(ξ)

, (4.4.32)

with the argument of the Macdonald functions given by (4.3.30), and where
the power of kũ is included so that the integral is dimensionless. Expressions
relating these functions to T (z, ρ), T ′(z, ρ) follow from recursion formulas
that allow them all to be generated from the simplest of them, once this is
expressed in terms of T (z, ρ), T ′(z, ρ).

Recursion formulas are obtained as follows. First, using the identity
(4.3.27) with f(ξ) = (kũ ξ)n, one obtains

tn+1
ν+1(z, ρ) =

iρz2

1 − z2 t
n
ν+1(z, ρ) +

z2

1 − z2

⎧⎨
⎩
Kν(ρ)
ρν

for n = 0,

ntn−1
ν (z, ρ) for n > 0.

(4.4.33)

Next, differentiate (4.4.32), using the identity (4.2.12), to obtain

tn+1
ν+1(z, ρ) = −iρ tnν+1(z, ρ) − i

∂tnν (z, ρ)
∂ρ

. (4.4.34)

These two equations can be combined to give

tnν+1(z, ρ) = −1 − z2
ρ

∂tnν (z, ρ)
∂ρ

+
iz2

ρ

⎧⎨
⎩
Kν(ρ)
ρν

for n = 0,

n tn−1
ν (z, ρ) for n > 0.

(4.4.35)

A further identity follows by differentiating (4.4.32) with respect to z:

tn+2
ν+1(z, ρ) = z3

∂tnν (z, ρ)
∂z

. (4.4.36)

A convenient starting point for generating all the functions follows by
considering the integral

∂T (z, ρ)
∂ρ

= −
∫ ∞

−∞
dχ

e−ρ cosh χ

sinhχ− z coshχ

= i
∫ ∞

0

dξ

∫ ∞

−∞
dχ e−ρ cosh χ+i(sinh χ−z cosh χ)ξ, (4.4.37)

where (4.3.19) is used. The final integral is evaluated using Trubnikov’s
method, leading to the identity

t00(z, ρ) =
iz

2
∂T (z, ρ)
∂ρ

=
i

2
[
2K1(ρ) +

(1 − z2)
ρ

T ′(z, ρ)
]
, (4.4.38)

where (4.4.4) is used. Then (4.4.35) with n = 0 allows one to construct all the
functions t0ν(z, ρ) for n = 0 and ν > 0. In particular, one finds
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t01(z, ρ) = − iz
2ρ
T (z, ρ), (4.4.39)

which gives the final expression for T (z, ρ) in (4.4.1). The functions with n > 0
are generated from those with n = 0 by using (4.4.33). The specific functions
that appear in Trubnikov’s form (4.3.31), (4.3.32) for the response tensors are
t02(z, ρ)− t23(z, ρ)/z2, t02(z, ρ) and using the foregoing results to evaluate these,
one may demonstrate the equivalence of Trubnikov’s forms (4.3.31), (4.3.32)
for ΠL(k), ΠT (k) and the forms of (4.3.5), (4.3.6) in terms of T (z, ρ), T ′(z, ρ).
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4.5 Waves in relativistic thermal plasmas

The properties of the natural modes of a relativistic thermal electron gas are
discussed in this section. There is an extensive literature related to this topic,
including [6, 11, 12, 13, 10, 14, 8, 15, 16].

4.5.1 General dispersion relations

The dispersion equation for an isotropic plasma is given by (2.5.12), specif-
ically by ΛL(k) [ΛT (k)]2 = 0. The solution ΛL(k) = 0 implies (kū)2 +
µ0Π

L(k) = 0, which corresponds to longitudinal waves, and the double so-
lution at ΛT (k) = 0 implies k2 + µ0Π

T (k) = 0, and corresponds to trans-
verse waves. In terms of the longitudinal and transverse functions defined
by (4.4.17), viz. ΦL(z, ρ) = −ΠL(k)/ε0ω2

p, ΦT (z, ρ) = −ΠT (k)/ε0ω2
p, these

dispersion relations become

ω2 = ω2
p Φ

L(z, ρ), (4.5.1)

ω2 = ω2
p

z2

1 − z2 Φ
T (z, ρ), (4.5.2)

which are the forms used in this section.
If only electrons and positrons are included, the only longitudinal waves

are Langmuir waves. The contribution of any positrons adds (with the same
sign) to that of the electrons, and they are included simply by defining the
number density in the rest frame, n, and hence ω2

p, to include both electrons
and positrons. Other longitudinal modes in an isotropic plasma become pos-
sible if other distributions are included, specifically, ion acoustic waves if ions
are included, and electron acoustic waves if two electron distributions with
different temperatures are included.

Equations (4.5.1) and (4.5.2) are transcendental, and in general they have a
hierarchy of solutions associated with different Riemann sheets. The different
solutions are referred to as the Landau solutions [17, 18], and are labeled
n = 0, 1, 2, . . ., with n = 0 the leading solution. For example, Prentice [10]
noted that there are no solutions of (4.5.1) with n > 1 for ρ∼<4 and that the
number of solutions with n > 1 increases uniformly with increasing ρ∼>25.
In the discussion below only the leading Landau solutions are considered.
Before considering the wave properties directly, it is appropriate to consider
two limiting cases, z2 → 0 and z2 → ∞, which determine the Debye length
and the cutoff frequencies, respectively.

4.5.2 Debye length

Debye screening in a nonrelativistic plasma implies that the electrostatic po-
tential of a charge q, at the origin r = 0, is modified from its vacuum value
φ(r) = q/4πε0 to φ(r) = (q/4πε0) exp(−r/λD), with λD the Debye length.
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The identification of the Debye length is based on the static longitudinal re-
sponse. In a nonrelativistic thermal electron gas, the static limit (ω → 0) of
the longitudinal response function has the form KL(k) = 1 +ΠL(k)/ε0ω2 →
1 + 1/|k|2λ2

D, with

λ−2
D = ω2

p ρ =
ω2

p

V 2
. (4.5.3)

More generally, one may define λD by

λ−2
D = lim

z→0

µ0Π
L(k)
z2

= −ω2
p lim

z→0

ΦL(z, ρ)
z2

. (4.5.4)

Inserting any of the explicit expressions (4.4.18), (4.4.20), (4.4.22) for ΦL(z, ρ)
into (4.5.4) and retaining only the leading terms in the expansion in z2, one
finds that the fully relativistic result for λD is the same as the nonrelativistic
limit (4.5.3).

4.5.3 Cutoff frequencies for z2 � 1

The cutoff frequency is determined by the dispersion relation in the limit
|k| → 0 for ω �= 0, which corresponds to z → ∞. The dispersion relations
(4.5.1) and (4.5.2) for Langmuir waves and transverse waves, respectively,
imply that they have the same cutoff frequency. This cutoff frequency, ωc, is
found from the expansions (4.4.25) of ΦL(z, ρ), ΦT (z, ρ) in 1/z2:

ω2
c = ω2

p

ρ

3

[
1 − Ki2(ρ)

K2(ρ)

]
=
ρω2

p

3
〈β2〉. (4.5.5)

It is interesting that the cutoff frequency (4.5.5) is related to the mean square
speed, 〈β2〉, given by (4.2.25), but there is no obvious physical interpretation
of this.

In the nonrelativistic and ultrarelativistic limits (4.5.5) becomes

ω2
c = ω2

p

{
1 − 5

2ρ
−1 + · · · for ρ� 1,

1
3ρ−

1
6ρ

3 + · · · for ρ� 1,
(4.5.6)

respectively. The limit ρ � 1 reproduces the known nonrelativistic result
that the cutoff frequency is the plasma frequency, ωc = ωp, for both longi-
tudinal and transverse waves. The cutoff frequency decreases to below the
plasma frequency, ωp, as the plasma becomes relativistic. This change in the
plasma frequency may be attributed to particles with Lorentz factors γ � 1,
contributing like particles with mass mγ, with ω2

p ∝ 1/mγ. This argument
might suggest that the cutoff frequency should be the proper plasma fre-
quency, but this is not the case. The proper plasma frequency is determined
by ω2

p0 = ω2
pK1(ρ)/K2(ρ) for a thermal electron gas, and although the cutoff

frequency (4.5.6) differs from the proper plasma frequency by no more than
10% over the entire range of ρ, it is not equal to the proper plasma frequency.
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Fig. 4.7. The dispersion curve for Langmuir waves is shown in terms of ω2/ω2
p as

a function of z for ρ = 1. The plot is the same as Fig. 4.4(b), with a dashed line
indicating the light line z = 1.

4.5.4 Dispersion curves for Langmuir waves

Dispersion curves for Langmuir waves are obtained by solving (4.5.1). The
plots of ΦL(z, ρ) shown in Fig. 4.4 also correspond to dispersion curves, specif-
ically for ω2/ω2

p as a function of z. To illustrate this for a specific case, the
curve for ρ = 1 is replotted in Fig. 4.7. It is convenient to separate the disper-
sion curve into four portions. In the region between z = 0 and z ≈ 0.75 the real
part of ΦL(z, ρ) is negative, so that there is no real solution of the dispersion
equation (4.5.1). Between z ≈ 0.75 and just below the peak in the curves for
the real part of ΦL(z, ρ), the imaginary part is larger than the real part, and
this implies strong damping which precludes weakly damped waves existing
in this range. From near the peak, at 1 − zpeak � 1, to z = 1 there exist a
range of weakly damped subluminal Langmuir waves. From z = 1 to z → ∞
there are undamped superluminal waves. These features exist for all ρ. In the
nonrelativistic case, ρ � 1, the frequency has a maximum at z ∼ (3/ρ)1/2

and it decreases only slightly with increasing z through the subluminal and
superluminal ranges.

In an ultrarelativistic plasma, subluminal Langmuir waves are confined to
an extremely narrow range just below z = 1, effectively to γ0∼>1/ρ, where γ0 =
1/(1− z2)1/2 is the effective Lorentz factor of the waves. The frequency of the
Langmuir waves decreases significantly from its peak value over this narrow
subluminal range and this decrease continues into the superluminal range z∼>1.
At very large z the frequency approaches the cutoff frequency, which is very
much smaller than both the peak frequency and the nonrelativistic plasma
frequency, ωp. Comparing the case ρ � 1 with the case ρ = 1, as shown in
Fig. 4.4, the main changes are a decrease in the asymptotic value ω2

c/ω
2
p, a

steepening of the dispersion curve between the peak and the asymptotic value,
a decrease in the peak value, and location of the peak closer to z = 1.
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The dispersion curves are shown in Fig. 4.8 as plots of frequency versus
wavenumber. The solutions are doubled-valued, below a maximum in both
ω and |k|. The lower-ω, lower-|k| branch has phase speed, ω < |k|V and is
strongly damped; the portions of the curves in Fig. 4.8 are artificial in that
they are plotted ignoring the damping. The concept of a wave is meaningful
only if it is weakly damped, because it must survive for many wave periods
in order for its period to be defined.

4.5.5 Approximate dispersion relations for Langmuir waves

Analytic approximation to the dispersion curves is simplest for large z, near
the cutoff frequency (4.5.5). The first two terms in the expansion (4.4.25) of
ΦL(z, ρ) give

ω2
L = ω2

c +
b′2
b′1

|k|2 = ω2
c +

3〈β4〉
5〈β2〉 |k|

2. (4.5.7)

This expansion is valid only if the correction term is small, which requires

|k|2λ2
D � b′21

b′2
=

5〈β2〉2
9〈β4〉 , (4.5.8)

where (4.5.5), in the form ω2
c = ω2

pρb
′
1, and (4.5.3) are used. In the nonrela-

tivistic and ultrarelativistic limits, the coefficients of |k|2 in (4.5.7) have the
approximate forms

b′2
b′1

=

⎧⎪⎪⎨
⎪⎪⎩

3
ρ

(
1 − 11

2ρ2
+ · · ·

)
for ρ� 1,

3
5
(1 − 1

2ρ
2 + · · ·) for ρ� 1,

(4.5.9)

respectively. The nonrelativistic limit reproduces the familiar dispersion rela-
tion, (2.6.3), for Langmuir waves, viz. ω2

L = ω2
p(1 + 3|k|2λ2

D), which is valid
for |k|2∼<1/3λ2

D. For ρ � 1, the validity of (4.5.7) extends from the superlu-
minal into the subluminal range. For ρ� 1, the range of validity of (4.5.7) is
restricted to z � 1.

The frequency at which the dispersion curve crosses the light line is deter-
mined by setting z = 1 in the dispersion equation (4.5.1). Using (4.4.27), the
exact expression is

lim
z→1

ωL(k) = ωp

[
(1 + 2/ρ2)K0(ρ) +K2(ρ)

2K2(ρ)

]1/2

, (4.5.10)

and approximations for large and small ρ follow from the approximate forms
in (4.4.27). The approximate dispersion relation (4.5.7) reproduces the re-
sult (4.5.10) only for ρ � 1, when they agree to first order in 1/ρ. As ρ
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Fig. 4.8. The ω-|k| dispersion curves for Langmuir waves are plotted for the same
values ρ as in Fig. 4.2–4.5. The light dashed line is the light line ω = |k|. The labels
on the curves indicate the value of ρ.

decreases, the relative difference between the frequency (4.5.10) and the cut-
off frequency (4.5.5) increases. Superluminal Langmuir waves cover a broad
frequency range, ωc ∼ ωpρ

1/2 < ω∼<ωp/ρ
1/2, in an ultrarelativistic plasma.

No simple analytic approximation is available for subluminal Langmuir
waves in a relativistic plasma. The dispersion is dominated by the effects of
the peak in ΦL(z, ρ), cf. Fig. 4.4, and this is not well-approximated by any of
the expansions discussed in §4.4.

4.5.6 Landau damping

Landau damping is strictly zero for superluminal waves. For subluminal waves
it is weak in the range of wave Lorentz factors γ0 − 1 � 1/ρ, and when this
inequality is reversed the damping is strong such that there are no weakly
damped waves.

The absorption coefficient for Landau damping follows from (2.4.14). For
longitudinal waves this gives γL(k) = 2RL(k) ImΠL(kL)/ε0ωL. Inserting the
imaginary part of ΠL(k) from (4.3.13), one finds

γL(k) =
πω2

pRL(k)
ωLK2(ρ)

γ2
0 − 1
γ2
0

(
1
2ργ

2
0 + γ0 +

1
ρ

)
e−ργ0 . (4.5.11)

The ratio, RL(k), of electric to total energy follows from (2.3.14). Correspond-
ing to the two approximate dispersion relations (4.5.7) and (4.5.11), one finds

RL(k) =
{

2 − z ∂
∂z

ln
[
ΦL(z, ρ)

]}−1

. (4.5.12)
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Fig. 4.9. The function z2ΦT (z, ρ)/(z2 − 1) is plotted for the same parameters as in
Fig. 4.2.

For z � 1, (4.5.12) with (4.4.25) gives RL(k) = ω2
L(z)/2ω2

c , and RL(k) ap-
proaches 1/2 as as the maximum frequency is approached.

The relativistically correct absorption coefficient (4.5.11) is strictly zero for
phase speeds greater than the speed of light, that is, for z > 1. In contrast,
the nonrelativistic absorption coefficient (2.6.4) predicts Landau damping for
z > 1. A nonrelativistic Maxwellian distribution implies a nonzero probability
of nonphysical particles with β > 1: the Landau damping for z > 1 is due
entirely to these nonphysical particles and is absent in the relativistically
correct treatment.

4.5.7 Transverse waves

The dispersion relation for transverse waves is determined by (4.5.2). Plots of
dispersion curves for transverse waves are shown in Fig. 4.9 for the same range
of inverse temperatures 1/ρ as in Fig. 4.8. Transverse waves in an isotropic
plasma always have phase speed greater than the speed of light, and Landau
damping is strictly zero for all superluminal waves.

As with Langmuir waves, near the cutoff frequency there is necessarily
a regime where expansion in small |k|2 (large z2) is valid. For z2 � 1 an
approximate dispersion relation is found by including the first order correction
to the solution ω2 = ω2

c given by (4.5.2). The resulting approximate dispersion
relation,

ω2 = ω2
c +

(
1 +

b′2
3b′1

)
|k|2, b′2

3b′1
=

〈β4〉
5〈β2〉 , (4.5.13)

applies just above the cutoff frequency, which is given by (4.5.5).
For nonrelativistic temperatures, ρ � 1, 〈β4〉/5〈β2〉 ≈ 1/ρ implies that

(4.5.13) reproduces the familiar dispersion relation ω2 = ω2
p + |k|2 for trans-

verse waves in a nonrelativistic plasma. For ultrarelativistic temperatures,
ρ� 1, one has 〈β4〉 → 1, 〈β2〉 → 1, and (4.5.13) gives ω2 = ω2

c + 6
5 |k|2, which

is valid only for 6
5 |k|2 � ω2

c .
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Fig. 4.10. Dispersion curves for transverse waves in a thermal plasma are plotted
as a function of z for the same parameters as in Fig. 4.8.

Except near the cutoff, transverse waves have phase speed close to the
speed of light. An approximate solution is found by assuming |1 − z2| � 1.
The leading term in the expansion of ΦT (z, ρ) in 1 − z2 is K1(ρ)/K2(ρ), cf.
(4.4.28). Retaining only this term gives

ω2
T = ω2

p0 + |k|2, (4.5.14)

where ωp0 is the proper plasma frequency, cf. (4.1.13) with (4.2.3). The result
(4.5.14) applies for ω2 � ω2

p0 irrespective of the value of ρ. However, it does
not apply near the cutoff frequency, and it is not correct to assume that the
cutoff frequency is equal to the proper plasma frequency. The cutoff frequency
is given by (4.5.5).

4.5.8 Acoustic waves

In an isotropic pair plasma at a single temperature the only waves that can
exist are Langmuir waves and transverse waves. An acoustic mode can exist
if there is a second component in the plasma. The second component may be
ions, or it may be a colder component of electrons. Then ΦL(z, ρ) consists of
contributions from the two components. Acoustic-like solutions are possible
when the colder component gives a positive contribution to ΦL(z, ρ) and the
hotter component gives a negative contribution to ΦL(z, ρ) at the same z.

Let the hotter component have plasma frequency ωph, and the colder com-
ponent have plasma frequency ωpc. The simplest approximation is when the
responses of the two components are approximated by their respective limits
for small and large z:

ΦL
h (z, ρ) = −ρhz2, ΦL

c (z, ρ) =
〈β2〉cρc

3
. (4.5.15)

The dispersion equation (4.5.1) has a solution

ω2 =
|k|2v2s

1 + |k|2λ2
dh

, vs = ωpcλdh. (4.5.16)
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For |k|2λ2
dh � 1, the dispersion relation (4.5.16) is acoustic-like, ω = |k| vs,

with vs playing the role of an acoustic speed. However, the assumptions made
in deriving this result are quite restrictive. Besides restrictions from the ap-
proximations made in (4.5.15), Landau damping by both components must
be weak.

Consider the case where the hot distribution consists of ultrarelativistic
electrons and positrons (ρh � 1) and the cold distribution consists of nonrela-
tivistic ions (〈β2〉cρc/3 → 1, ωpc → ωpi). Then (4.5.16) describes a relativistic
generalization of ion acoustic waves, cf. (2.6.6). Let the multiplicity of the
electron-positron distribution be M , where M is the ratio of pairs to un-
paired electrons, so that in a charge-neutral plasma the ratio of the number
density of electrons plus positrons to ions is ne/ni = 1 + 2M . Then (4.5.16)
gives

vs =
(

me

mi(1 + 2M)ρh

)1/2

. (4.5.17)

The condition for the approximations (4.5.15) is quite restrictive, e.g.,
Vi∼<vs∼<c/2, and the waves exist only if Landau damping is weak for both
distributions of particle. For example, Landau damping precludes ion acoustic
waves existing in a nonrelativistic electron-proton plasma except when the
electrons are much hotter than the protons.
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4.6 Instability due to anisotropic distributions

In a plasma instability, waves in some mode of the plasma grow, and the
plasma is said to be unstable. A thermal plasma is stable, and it is straight-
forward to show that any isotropic distribution of particles is also stable.
Hence, an instability requires an anisotropic distribution of particles. In non-
relativistic, unmagnetized plasmas, anisotropy is usually attributed to either
relative streaming motions or to a temperature anisotropy. Relativistic ver-
sions of these anisotropic distributions are discussed in this section.

4.6.1 Classes of anisotropic distributions

An anisotropy is usually associated with a preferred direction in the plasma,
which may be the axis defined by a streaming motion or by a temperature
anisotropy. It is straightforward to allow streaming to be relativistic, but there
is no straightforward relativistic generalization of a temperature anisotropy. A
simple nonrelativistic model for a temperature anisotropy is the bi-Maxwellian
distribution f(p) ∝ exp[−(p2⊥/2mT⊥ − p2‖/2mT‖], with the temperature, T⊥,
perpendicular to b different from the temperature, T‖, parallel to b. There
are ‘strictly parallel’ (T⊥ = 0, T‖ �= 0) and ‘strictly perpendicular’ (T⊥ �= 0,
T‖ = 0) relativistic distributions, but no relativistic counterpart with (T⊥ �= 0,
T‖ �= 0. Before discussing streaming, strictly parallel and strictly perpen-
dicular distributions, it is appropriate to comment on an alternative way of
including a weak anisotropy.

If the anisotropy is weak, one may describe it by expanding the distribution
function in spherical harmonics. In the case where the distribution is axially
symmetric, this reduces to an expansion in Legendre polynomials,

f(p) =
∞∑

n=0

fn(|p|)Pn(cosα),

fn(|p|) =
1

2n+ 1

∫ 1

−1

d cosαPn(cosα) f(p), (4.6.1)

where α = 0 corresponds to the axis of symmetry. A P1 term may be used
to model a streaming anisotropy and a P2 term may be used to describe a
temperature anisotropy. For an anisotropic distribution of the form (4.6.1), the
terms in the response tensor may be evaluated by carrying out the integrals
over cosα explicitly, as in (4.1.19), but with an extra factor of Pn(cosα) in
the integrand. This procedure is not discussed further here.

In a covariant approach, given the axis b in the rest frame, one may sep-
arate into components parallel and perpendicular to this axis. To do so,
first introduce the 4-vector bµ such that one has bµ = [0, b] in the rest
frame, ũµ = [1,0]. These two 4-vectors enable one to separate into two two-
dimensional subspaces by using the metric tensors
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gµν
‖ = ũµũν − bµbν , gµν

⊥ = gµν − gµν
‖ . (4.6.2)

Projections using these tensors separate any 4-vector into parallel and per-
pendicular components in a frame-independent way. Specifically, one has

kµ = kµ
‖ + kµ

⊥, kµ
‖ = kũ ũµ + k‖bµ, k‖ = −kb, (4.6.3)

where kũ and k‖ become, respectively, the frequency and the 3-vector com-
ponent of k along b in the rest frame. One may also use these 4-vectors to
represent the components of the response 4-tensor.

4.6.2 Distributions with relative streaming

One class of idealized streaming motions consists of distributions obtained
from an isotropic distribution by applying a Lorentz transformation. With this
class, relative streaming distributions are constructed by adding two such dis-
tributions obtained by applying Lorentz transformations with different boosts.

Let the laboratory frame, in which the distribution is streaming, be de-
noted by unprimed quantities, and the rest frame be denoted by primes. As-
suming each distribution to be isotropic in its rest frame, its contribution
to the response tensor may be described in terms of longitudinal and trans-
verse response functions, ΠL(k) and ΠT (k). Specifically, the contribution of
a species with streaming 4-velocity us is found simply by making the replace-
ment ũ→ u0 = [γo, γ0v0] in (4.1.14), which becomes

Πµν(k) = ΠL(k)Lµν(k, u0) +ΠT (k)T µν(k, u0). (4.6.4)

The expressions for Lµν(k, u), T µν(k, u) are given by (1.6.7), (1.6.9) in terms
of the invariants ku, k2, with ku→ ku0 = γ0(ω − k · v0) here. The invariant
z, which is the phase speed in units of the speed of light, reduces here to

z0 =
ω − k · v0

[(k − ωv0)2 − |k × v0|2]1/2
, (4.6.5)

where z = kũ/[(kũ)2 − k2]1/2 is used. Thus, given an explicit expression for
ΠL(k), ΠT (k) in the rest frame of the streaming component, (4.6.4) deter-
mines the contribution of this distribution in the laboratory frame.

4.6.3 Strictly-parallel thermal distribution

A strictly-parallel distribution is defined to be one in which all the particles
have p⊥ = 0. The distribution function in the rest frame is of the form f(p) ∝
δ2(p⊥) g(γ), where it is convenient to introduce the one-dimensional velocity,
β, by writing p‖ = mγβ, γ = 1/(1 − β2)1/2, so that the normalization is
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n =
∫ ∞

−∞

dp‖
2π
g(γ) =

m

2π

∫ 1

−1

dβ γ3 g(γ), (4.6.6)

where n is the number density in the rest frame. A straightforward evalua-
tion for the response tensor for such a distribution follows from the forward-
scattering form (4.1.1), which gives

Πµν(k) = −q
2

m

[
nprg

µν − k
µfν

1 + kνfµ
1

kũ
+
k2fµν

2

(kũ)2

]
, (4.6.7)

with npr the proper number density, and with

fµ
1 = kũ

∫
d4p

(2π)4
F (p)

uµ

ku
= −zm

2π

∫ 1

−1

dβ γ2 g(γ)
ũµ + β bµ

β − z ,

fµν
2 = (kũ)2

∫
d4p

(2π)4
F (p)

uµuν

(ku)2

=
z2m

2π

∫ 1

−1

dβ γ2 g(γ)
(ũµ + β bµ)(ũν + β bν)

(β − z)2 , (4.6.8)

where z = −kũ/kb is defined here to involve only the parallel wavenumber,
so that it reduces to z = ω/k‖ in the rest frame.

Consider a one-dimensional Jüttner distribution, which is a strictly-parallel
counterpart of the isotropic relativistic thermal distribution (4.2.1). This is

f(p) = (2π)3δ2(p⊥) g(γ), g(γ) =
ne−ργ

2mK1(ρ)
. (4.6.9)

The corresponding counterpart of (4.2.2) is

F (p) =
(2π)4n
K1(ρ)

δ(p2 −m2) δ2(p⊥) exp[−ρ(pū)/m]. (4.6.10)

The integrals in (4.6.8) are performed using the methods discussed in §4.4.
One finds

fµ
1 =

−nz
2K1(ρ)

[(
ũµ + zbµ

) ∂2T (z, ρ)
∂ρ2

+ bµ 2K0(ρ)
]
,

fµν
2 =

nz2

2K1(ρ)

{
(ũµ + zbµ)(ũν + zbν)

∂2T ′(z, ρ)
∂ρ2

+
[
(ũµbν + ũνbµ) + 2z bµbν

] ∂2T (z, ρ)
∂ρ2

+ bµbν 2K0(ρ)
}
, (4.6.11)

where the definition (4.3.1) of T (z, ρ) is used, and where the differentiation is
carried out using (4.4.2). One has
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npr =
K0(ρ)
K1(ρ)

,
∂2T (z, ρ)
∂ρ2

=
2zK0(ρ) + T (z, ρ)

1 − z2 ,

∂2T ′(z, ρ)
∂ρ2

=
(1 + z2) 2K0(ρ) + 2zT (z, ρ) + (1 − z2)T ′(z, ρ)

(1 − z2)2 .

(4.6.12)

The resulting expression for the response tensor is

Πµν(k) = −
ε0ω

2
p

2K1(ρ)

{
2K0(ρ) g

µν
⊥ +

z[2zK0(ρ) + T (z, ρ)]
1 − z2

kµ
⊥ũ

ν + kν
⊥ũ

µ

kũ

+
z[2K0(ρ) + zT (z, ρ)]

1 − z2
kµ
⊥b

ν + kν
⊥b

µ

kũ

−
(
k2
⊥

(kũ)2
z2
∂2T ′(z, ρ)
∂ρ2

+ T ′(z, ρ)
)

(ũµ + zbµ)(ũν + zbν)
}
. (4.6.13)

Major simplification occurs for parallel propagation (k⊥ = 0), when the only
terms that remain are the constant term proportional to gµν

⊥ and the dispersive
term proportional to T ′(z, ρ) in the ũ-b plane.

There are longitudinal waves in a one-dimensional plasma for parallel prop-
agation, when only the term proportional to T ′(z, ρ) remains in (4.6.13). The
dispersive term in the one-dimensional case is similar to that in the isotropic
case, with ΦL(z, ρ) replaced by T ′(z, ρ). Fig. 4.3 and Fig. 4.4 show that the two
dispersion relations are similar in a nonrelativistic plasma, but are quite differ-
ent in an ultrarelativistic plasma. In particular, the peak value of T ′(z, ρ) is of
order 1/ρ2 larger than its asymptotic value T ′(∞, ρ), whereas for ΦL(z, ρ) the
corresponding factor is ∼ ln(1/ρ). It follows that subluminal, parallel Lang-
muir waves in an ultrarelativistic (ρ � 1), strictly-parallel plasma have fre-
quencies ω ∼ ωp/ρ

1/2, which are much greater than the cutoff frequency
ωc ∼ ωpρ

1/2.

4.6.4 Trubnikov’s method for strictly-parallel distribution

Trubnikov’s method may be used in an alternative derivation of the re-
sponse tensor for the strictly-parallel distribution (4.6.9). The treatment of
the isotropic case, leading to (4.3.28), is readily modified to treat the strictly-
parallel case. The changes are that the orders of all the functions Kν(z)/zν

are reduced by unity, and sµ and s′µ have no space components orthogonal
to b in the rest frame. With these changes, the counterparts of (4.3.22) and
(4.3.25) are

I(ρ, ξ) =
n

K1(ρ)
K0

(
r‖(ξ)

)
, aµ

‖ (ξ) = ρũµ
‖ − ikµ

‖ ξ,

r‖(ξ) = [aµ
‖ (ξ)a‖µ(ξ)]1/2 =

[
(ρ− iω ξ)2 + k2

‖ξ
2)
]1/2

, (4.6.14)

and the differential operators give
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ûµK0

(
r‖(ξ)

)
= aµ

‖ (ξ)
K1

(
r‖(ξ)

)
r‖(ξ)

,

ûµûνK0

(
r‖(ξ)

)
= −gµν

‖
K1

(
r‖(ξ)

)
r‖(ξ)

+ aµ
‖ (ξ)aν

‖(ξ)
K2

(
r‖(ξ)

)
r2‖(ξ)

. (4.6.15)

The form of the response tensor analogous to (4.3.28) is

Πµν(k) =
q2n

mK1(ρ‖)

∫ ∞

0

dξ ξ

{
−
[
(k2)‖gµν − kµ

‖ k
ν − kµkν

‖ + k2gµν
‖
]

×
K1

(
r‖(ξ)

)
r‖(ξ)

+
(
ka‖(ξ)

)2
aµν
(
k, a‖(ξ)

) K2

(
r‖(ξ)

)
r2‖(ξ)

}
. (4.6.16)

Using the identity (4.3.27), with a(ξ), r(ξ) replaced by a‖(ξ), r‖(ξ), one can
derive various alternative forms for the response tensor. The equivalence of
the various forms in which the result may be written follows from relations
derived in §4.4 for the generalized Trubnikov functions (4.4.32).

Although the response tensor (4.6.16) can be separated into longitudinal
and transverse parts, to do so can be misleading because there are other terms
that need to be included. Due to these additional terms, the form (4.1.14) does
not apply if the medium is anisotropic. For example, if one calculates the
longitudinal part, inserts it in the dispersion equation, (kũ)2 + µ0Π

L(k) = 0,
for longitudinal waves, and solves this equation, the resulting solution does not
correspond to a natural mode of the medium in general. It gives the correct
dispersion relation in any special case where a natural mode is longitudinal,
and it plausibly gives an approximation to the correct dispersion relation if the
waves are nearly longitudinal. However, in an anisotropic medium, it is only
for special cases that a natural mode is longitudinal or transverse, typically
only when the wave vector is parallel or perpendicular to the axis of symmetry.

4.6.5 Strictly-perpendicular thermal distribution

A strictly-perpendicular thermal distribution is of the form, cf. (4.2.1),

f(p) = δ(p‖)
(2π)5/2nρ1/2e−ργ

m2K3/2(ρ)
, (4.6.17)

where the δ-function projects out motions along the axis. The counterpart of
(4.2.2) for the distribution (4.6.17) is

F (p) =
(2π)5/2nρ1/2

mK3/2(ρ)
δ(p2 −m2) δ(p‖) exp[−ρ(pū)/m], (4.6.18)

with p‖ = −pb, cf. (4.6.3).
The derivation of the response tensor using the method based on (4.1.1)

in the form (4.6.7) leads to expressions that involve a new class of relativistic
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plasma dispersion functions involving integrals with denominators of the form
(β2−z2)1/2 and (β2−z2)3/2, and these cannot be expressed in terms of T (z, ρ).
Rather than define a new class of relativistic plasma dispersion functions to
treat this particular case, it is more convenient to apply Trubnikov’s method
to it.

Trubnikov’s method applied to the strictly-perpendicular case closely par-
allels the derivation of (4.3.29) for the isotropic case and (4.6.16) for the
strictly-parallel case. Compared with the isotropic case, the changes are that
(i) the orders of all the functions Kν(z)/zν are reduced by one half, and (ii)
the parallel components of sµ and s′µ are identically zero. With these changes,
in place of (4.3.22), one has

I(ρ, ξ) =
nρ1/2

K3/2(ρ)
K1/2

(
rP(ξ)

)
r
1/2
P (ξ)

, aµ
P(ξ) = ρũµ − ikµ

Pξ,

rP(ξ) = [aµ
P(ξ)aPµ(ξ)]1/2 =

[
(ρ− iω ξ)2 + k2

Pξ
2)
]1/2

, (4.6.19)

and the differential operators give

ûµK1/2

(
rP(ξ)

)
r
1/2
P (ξ)

= aµ
P(ξ)

K3/2

(
rP(ξ)

)
r
3/2
P (ξ)

,

ûµûνK1/2

(
rP(ξ)

)
r
1/2
P (ξ)

= −gµν
P

K3/2

(
rP(ξ)

)
r
3/2
P (ξ)

+ aµ
P(ξ)aν

P(ξ)
K5/2

(
rP(ξ)

)
r
5/2
P (ξ)

.

(4.6.20)

The subscript P denotes components restricted to the three-dimensional sub-
space orthogonal to the axis of symmetry, bµ. This involves a separation into
this three-dimensional P-subspace (with two space coordinates plus the time
coordinate) and a one-dimensional ‖-subspace. The metric tensor for this P-
subspace is gµν

P = gµν + bµbν , so that one has, for example, kµ
P = kµ + bµ bk,

where bk = −k‖ is the component of the wave 3-vector along the axis in the
rest frame.

The resulting expression for the response tensor may be written in a form
similar to (4.3.28) or (4.6.16):

Πµν(k) =
q2n

mK3/2(ρ)

∫ ∞

0

dξ ξ

{
−
[
(k2)Pgµν − kµ

Pk
ν − kµkν

P + k2gµν
P

]

×
K3/2

(
rP(ξ)

)
rP(ξ)

+
(
kaP(ξ)

)2
aµν
(
k, aP(ξ)

) K5/2

(
rP(ξ)

)
r2P(ξ)

}
. (4.6.21)

The result (4.6.21) is a covariant generalization of a result derived by
Trubnikov and Yakubov [19]. As with the isotropic and the strictly-parallel
cases, various alternative forms are related by the counterpart of the identity
(4.3.27), now with subscripts P added to a(ξ) and r(ξ).
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The Macdonald functions that appear in this strictly-perpendicular case
are expressible in terms of simpler functions:

K1/2(z) =
(π

2

)1/2 e−z

z1/2
, K3/2(z) =

(π
2

)1/2 e−z

z3/2
(1 + z),

K5/2(z) =
(π

2

)1/2 e−z

z5/2
(3 + 3z + z2). (4.6.22)

Thus, for example, the proper density is related to the density in the rest
frame by npr = nK1/2(ρ)/K3/2(ρ) = nρ/(1 + ρ).

The plasma dispersion functions in (4.6.21) are reduced to integrals over
elementary functions by using (4.6.22). The contour of integration is deformed
as in the derivation of (4.4.7). The resulting class of relativistic plasma dis-
persion functions are Trubnikov functions with half-integer ν.
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4.7 Nonlinear response tensors

General and approximate forms for the nonlinear response tensors are pre-
sented in this section. These tensors are defined by the nonlinear terms in the
weak turbulence expansion (1.4.4).

4.7.1 General forms for the nonlinear response tensors

General forms for the quadratic and cubic nonlinear response tensors are de-
rived relatively simply by using the forward-scattering method. On averaging
the single-particle current (3.3.11) over a distribution F (p) of particles, the
explicit expressions for the response tensors follow using (3.3.15) and (3.3.16),
respectively. Writing the first argument as k0 = −k, so that the n-fold convo-
lution integral (1.3.7) corresponds to k0 + k1 + · · ·+ kn = 0, for the quadratic
response tensor one finds

Π(2)µνρ(k0, k1, k2) = − q3n

2m2c

∫
d4p

(2π)4
F (p)

[
aµν(k0, k1, u)

k2αG
αρ(k2, u)
k2u

+aµρ(k0, k2, u)
k1αG

αν(k1, u)
k1u

+ aνρ(k1, k2, u)
k0αG

αµ(k0, u)
k0u

]
,

(4.7.1)

and for the cubic response tensor one finds

Π(3)µνρσ(k0, k1, k2, k3)

= − q
4n

6m3

∫
d4p

(2π)4
F (p)

[
(k2 + k3)2

(k2u+ k3u)2
aµν(k0, k1, u)aρσ(k1, k2, u)

+
aµν(k0, k1, u)
k2u+ k3u

{
k2α(k2 + k3)β

k2u
+
k3β(k2 + k3)α

k3u

}
Gαρ(k2, u)Gβσ(k3, u)

+
aρσ(k2, k3, u)
k0u+ k1u

{
k0α(k0 + k1)β

k0u
+
k1β(k0 + k1)α

k1u

}
Gαµ(k0, u)Gβν(k1, u)

+(ν, k1) → (ρ, k2) + (ν, k1) → (σ, k3)
]
. (4.7.2)

The final line in (4.7.2) indicates additional terms that are obtained from
those written by making the indicated replacements.

The cold plasma forms follow from (4.7.1) and (4.7.2) by setting F (p) =
n(2π)4δ4(p−mũ), where n is the number density in the rest frame.

4.7.2 Alternative forms derived using the Vlasov approach

The Vlasov method leads to more cumbersome expressions for the nonlinear
response tensors than the forward-scattering method. These are the terms
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n = 2 and n = 3 in the expansion of the current (3.2.8) with (3.2.6) and
(3.2.7). The explicit expressions obtained are, for the quadratic response,

Π(2)µνρ
us (k0, k1, k2) = q3

∫
d4p

(2π)4
uµ k1u

ku
Gαν(k1, u)

∂

∂pα

[
Gβρ(k2, u)

∂

∂uβ
F (p)

]
,

(4.7.3)
and, for the cubic response,

Π(3)µνρσ
us (−k, k1, k2, k3) = q4

∫
d4p

(2π)4
uµ k1p

ku
Gαν(k1, u)

× ∂

∂pα

{
Gβρ(k2, u)

∂

∂uβ

[
Gγσ(k3, u)

∂

∂uγ
F (p)

]}
. (4.7.4)

These forms are unsymmetrized (denoted by subscript ‘us’) over the argu-
ments and indices. One may impose the symmetry by replacing (4.7.3) by
one half the sum of the term written plus another term obtained by the inter-
change (ν, k1) → (ρ, k2), and likewise a symmetrized form may be constructed
from (4.7.4). No significant simplification is possible in general.

4.7.3 Linear response for a longitudinal slow disturbance

The foregoing general expressions for the nonlinear response tensors are too
cumbersome for many practical purposes. Simplifying approximations often
need to be made. The two most useful approximations correspond to the
phase speed of a relevant disturbance being much greater or much less than
the thermal speed of the particles. For fast disturbances the cold plasma ap-
proximation is appropriate. However, the cold plasma forms apply only when
all the disturbances and the beats between them are fast. Slow disturbances
are usually approximately longitudinal, due to being dominated by fluctu-
ations in the charge density. Approximate forms for the nonlinear response
tensors are also required when some of the disturbances are fast and some are
slow.

If a disturbance, at k say, is slow, the corresponding resonant denomina-
tor, ku, is small in the sense that the dominant contribution to the response
tensors comes from the term with the highest power of ku in the denomi-
nators of the integrands in (4.7.1) and (4.7.2). However, one cannot simply
neglect the other terms because doing so leads to an expression that does not
satisfy the charge-continuity and gauge-invariance conditions. The following
procedure overcomes this difficulty.

Consider first the approximation to the linear response tensor for a slow
disturbance. In the expression (4.1.1) there is one term, k2uµuν/(ku)2, with
(ku)2 in the denominator. Retaining only the corresponding term in the lon-
gitudinal part (4.1.17), one obtains the approximation

ΠL(k) ≈ −q
2

m

k2(kũ)2

k2 − (kũ)2

∫
d4p

(2π)4
F (p)

1
(ku)2

. (4.7.5)
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with u = p/m, and where the particles are assumed nonrelativistic in setting
uũ ≈ 1. In the following, where ΠL(k) appears in approximate expressions,
the approximate form (4.7.5) is implied.

For a longitudinal field at (µ, k), that is associated with the index µ and the
argument k in (4.7.3) or (4.7.4), one may choose the Coulomb gauge in the rest
frame, in which case the entire response to the longitudinal field is described
by the µ = 0 component. Thus the relevant approximation to the response
tensor is contained in the µ = 0 component. Given an approximation to the
µ = 0 component, a covariant and gauge-independent form is obtained from
this by multiplying by the longitudinal 4-vector, Lµ(k, ũ) that has unit µ = 0
component and which satisfies the gauge-invariance condition kµLµ(k, ũ) = 0.
A longitudinal 4-vector is given by kαG

αµ(k, ũ), which is normalized so that
the µ = 0 component is unity in the rest frame:

Lµ(k, u) =
ku kµ − k2uµ

(ku)2 − k2
. (4.7.6)

After making the relevant approximations to the µ = 0 component of the
response tensor, one simply multiplies the resulting expression by Lµ(k, ũ)
to obtain the required approximation to the covariant response tensor. For
the linear response, which is Πµν(k) = ΠL(k)Lµν(k, ũ) in the longitudinal
approximation, the identity

Lµ(k, u)Lν(k, u) = − (kũ)2

(kũ)2 − k2
Lµν(k, ũ) (4.7.7)

relates the notation based on (4.7.6) to that involving Lµν(k, ũ), cf. §1.6. For
any response, linear or nonlinear, one may write the approximate form of the
response tensor such that the index and argument, (νn, kn) say, corresponding
to a slow disturbance, appears only in the longitudinal form Lνn(kn, ũ).

4.7.4 Nonlinear responses with one slow disturbance

Consider the situation where the quadratic response Π(2)µνρ(−k, k1, k2)
involves two fast disturbances and one slow disturbance. In particular, sup-
pose that kµ

2 describes the slow disturbance. It is not appropriate to sym-
metrize over all the disturbances, because the disturbance described by kµ

2

is different from the other two by hypothesis. In practice one is concerned
with the case where kµ and kµ

1 correspond to high frequencies compared
with kµ

2 . The beat condition kµ = kµ
1 + kµ

2 in the rest frame requires
ω ≈ ω1 � ω2, with |k2| ≈ max(|k|, |k1|). Thus we seek an unsymmetrized
form Π

(2)µνρ
us (−k, k1, k2) with kũ ≈ k1ũ � k2ũ, and such that kµ and kµ

1

describe fast disturbances. The dominant term (4.7.1) is that with (k2u)2 in
the denominator. The integral over this term is proportional to ΠL(k2) in the
approximation (4.7.5). Thus the quadratic response tensor is approximated
by
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Π(2)µνρ
us (−k, k1, k2) ≈

q

m
aµν(k, k1, ũ)Lρ(k2, ũ)

(k2ũ)2 − k2
2

(k2ũ)2
ΠL(k2), (4.7.8)

where the factor 2 in the denominator in (4.7.1) no longer appears because
an unsymmetrized form is being used.

A similar approximation applies for the cubic response when there is one
slow disturbance. Suppose this is the disturbance at k3. Selecting the terms
with (k3ũ)2 in the denominator of the integrand in (4.7.2) and proceeding as
in the derivation of (4.7.8), one finds the approximate form

Π(3)µνρσ
us (−k, k1, k2, k3) ≈

q2

m2

[
aµν(k, k1, ũ)
(k − k1)ũ

(k − k1)αG
αρ(k2, ũ)

+
aµρ(k, k2, ũ)
(k − k2)ũ

(k − k2)αG
αν(k1, ũ)

]
Lσ(k3, ũ)

(k3ũ)2 − k2
3

(k3ũ)2
ΠL(k3),

(4.7.9)

with Lσ(k3, ũ) defined by (4.7.6). The factor 1/6 in the symmetrized form
(4.7.2) is omitted in the unsymmetrized form (4.7.9). The form (4.7.9) applies
for k, k1, k2 fast and k3 slow, and it also requires that k − k1 and k − k2 be
fast.

The cubic response may involve one slow disturbance in a qualitatively
different way. Even if all of the disturbances at k, k1, k2, k3 are fast, one of
the beats at k − k1 = k2 + k3, k − k2 = k1 + k3, k − k3 = k1 + k2 may be a
slow disturbance. Suppose that the beat at k − k1 = k2 + k3 is slow and that
all the others are fast. This case is treated by starting from (4.7.2), selecting
the terms with the square of (k − k1)u = (k2 + k3)u in the denominator and
proceeding as above. One obtains

Π(3)µνρσ
us (−k, k1, k2, k3) ≈

q2

m2
aµν(k, k1, ũ)aρσ(k2, k3, ũ)

× (k − k1)2 − [(k − k1)ũ]2
[(k − k1)ũ]2

ΠL(k − k1). (4.7.10)

The form (4.7.10) requires that the phase speeds corresponding to k− k1 and
k − k2 be fast with only the beat at k − k1 = k2 + k3 being slow.

4.7.5 Electrostatic model

A particularly simple model for the nonlinear responses follows by assuming
that the response is purely electrostatic and describing it as a fluctuation in
the charge density of the form

ρ(x) = qn exp[−qφ(x)/mV 2], (4.7.11)

where φ(x) is the potential for the electrostatic field in the Coulomb gauge.
The temperature is written as T = mV 2, where V is the thermal speed.
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(This corresponds to ρ = 1/V 2 in terms of the parameter ρ used in §4.2.)
Only one species of particle is included explicitly, and this is electrons in most
applications. On expanding the exponential in (4.7.11) one obtains

ρ(1)(x) = − q2n

mV 2
φ(x), ρ(2)(x) =

q3n

2m2V 4
[φ(x)]2,

ρ(3)(x) = − q4n

6m3V 6
[φ(x)]3. (4.7.12)

The corresponding linear tensor is obtained by noting that the first of (4.7.12)
implies Π00(k) = −q2n/mV 2. Hence one has

Πµν(k) = − q2n

mV 2
Lµ(k, ũ)Lν(k, ũ), ΠL(k) =

q2n

mV 2

(kũ)2

(kũ)2 − k2
, (4.7.13)

where the identification of ΠL(k) follows from (4.7.7). The quadratic and
cubic response tensors follow in a similar way from the quadratic and cubic
terms in (4.7.12); they are

Π(2)µνρ(−k, k1, k2) =
q3n

2m2V 4
Lµ(k, ũ)Lν(k1, ũ)Lρ(k2, ũ), (4.7.14)

Π(3)µνρσ(−k, k1, k2, k3) = − q4n

6m3V 6
Lµ(k, ũ)Lν(k1, ũ)Lρ(k2, ũ)Lσ(k3, ũ),

(4.7.15)

respectively. Factors 1
2 and 1

6 appear in (4.7.14) and (4.7.15) because these are
symmetrized forms, with all fields being electrostatic. For example, (4.7.13)–
(4.7.15) are appropriate when describing nonlinear interactions involving only
ion acoustic waves.

4.7.6 Two fast and two slow disturbances

Two relatively simple approximations are used above to treat fast and slow
disturbances, respectively. These are the cold plasma approximation, which
applies when all disturbances and the beats between them are fast, and the
electrostatic approximation, which applies when all disturbances are slow and
are approximated as static and longitudinal. These two approximations may
be combined to treat a mixture of fast and slow disturbances. When only one
field is slow, this combined theory leads to expressions for the quadratic and
cubic response tensors that are limiting cases of (4.7.8) and (4.7.9), respec-
tively. The limit is that in which ΠL in (4.7.8) or (4.7.9) is approximated by
(4.7.13). When two fields are slow, the combined theory reproduces (4.7.14)
for the quadratic response, and for the cubic response it leads to

Π(3)µνρσ
us (−k, k1, k2, k3) ≈ − q4n

m3V 4
aµν(k, k1, ũ)Lρ(k2, ũ)Lσ(k3, ũ), (4.7.16)

where the disturbances at (µ, k) and (ν, k1) are fast and those at (ρ, k2) and
(σ, k3) are slow.
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Classical plasmadynamics

Plasmadynamics is concerned with the emission, absorption and scattering of
waves by particles, with the scattering of particles by waves, and with wave-
wave interactions in plasmas. A single-particle approach is usually used in
treating spontaneous emission, and absorption may be treated either using
a collective-medium approach, with dissipation included in the anithermitian
part of the response tensor, or by relating absorption to emission. The link
between the single-particle and collective-medium approaches is subtle, involv-
ing causality, the second law of thermodynamics, and the optical theorem. In
quantum treatments the single-particle approach is strongly preferred, with
emission and absorption being related on a microscopic level through detailed
balance (or the Einstein coefficients). A semiclassical theory allows one to
appeal to this powerful principle while all the detailed calculations remain
classical. The Einstein coefficients relate spontaneous emission, stimulated
emission and absorption, and they ensure conservation of energy and momen-
tum at the microscopic scale. This overcomes a serious weakness in classical
electrodynamics, which does not automatically conserve these quantities, re-
quiring one to invent a radiation reaction force to restore the conservation
law. The derivation of the kinetic equations that describe the evolution of
the waves and particles is particularly simple in the semiclassical approach.
In a collective-medium approach, the derivation of the kinetic equations in-
volves various statistical approaches. In this chapter covariant versions of both
single-particle and collective-medium techniques are used, with the emphasis
on the semiclassical approach.

The theory of spontaneous emission processes is developed in §5.1. The
semiclassical formalism is used to derive kinetic equations in §5.2. The theory
is applied to simple emission processes in §5.3. A collective-medium derivation
of the kinetic equations using the theory of fluctuations is presented in §5.4.
Scattering of waves by particles is treated in §5.5 and applied to the case of
waves in vacuo in §5.6. Wave-wave interactions are discussed §5.7, and some
nonlinear wave equations are derived in §5.8.
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170 5 Classical plasmadynamics

5.1 Spontaneous emission

The source term in the inhomogeneous wave equation (2.1.1) is an extraneous
current, Jext. To treat emission by a particle one identifies this extraneous
current with that due to the particle. After Fourier transforming, the inho-
mogeneous wave equation (2.1.1) is solved for the field, A, generated by Jext.
This field includes an inductive part and a radiative part. The inductive part
describes the self-consistent field associated with the particle. In the simplest
case, that of a particle at rest in a thermal plasma, the self-consistent field is
its Coulomb field modified by the Debye screening. Only the radiative part
is associated with spontaneous emission by the particle, and it separates into
radiation fields for each wave mode of the medium.

5.1.1 Radiation field

The solution of the inhomogeneous wave equation, cf. (2.1.1),

ΛHµν(k)Aν(k) = −µ0J
µ
ext(k), (5.1.1)

is given by (2.1.4), viz.

Aµ(k) = −Dµ
ν(k)Jν

ext(k), (5.1.2)

with, cf. (2.1.12),

Dµν(k) = µ0

GαG
′
β

(Gk)(G′k)
λµανβ(k)
λ(k)

, (5.1.3)

where Gα and G′
β are arbitrary, with Gα determining the gauge of Aµ.

Spontaneous emission of radiation is a time-irreversible process. This al-
lows one to identify the radiation field by separating the total field into the
induction field, which is the time-reversible part, and the radiation field, which
is the time-irreversible part. When (5.1.3) is inserted into (5.1.2), the hermi-
tian part of the propagator leads to the inductive part of the field, which is
not considered further in this section. Only the part of Aµ(k) that arises from
the antihermitian part of the propagator contributes to the emission of radia-
tion. The relevant antihermitian part of the propagator (5.1.3) is obtained by
imposing the causal condition on it. (There is another contribution to anti-
hermitian part of the propagator, from the anithermitian part of the response
tensor, that is not relevant here.) The Landau prescription requires that λ(k)
be replaced by λ(k) + i0 in the denominator of (5.1.3). The Plemelj formula
(1.3.20) gives the antihermitian part,

DAµν(k) = −iπµ0

GαG
′
β

(Gk)(G′k)
λµανβ(k) δ

(
λ(k)

)
. (5.1.4)
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The nonzero contributions to DA(k) come from the zeros of λ(k). A specific
zero, λ(kM ) = 0, corresponds to the dispersion relation k = kM for a specific
wave mode M . The contribution to the antihermitian part corresponding to
the mode M follows by writing

δ
(
λ(k)

)
=
∑
M

1
|∂λ(k)/∂ω|

[
δ
(
ω − ωM (k)

)
+ δ
(
ω + ωM (−k)

)]
, (5.1.5)

and retaining only the contribution from the modeM in the sum over all wave
modes.

In evaluating (5.1.4) it is convenient to choose the temporal gauge, and to
rewrite the factor λµανβ(k)/|∂λ(k)/∂ω| that appears in (5.1.4) with (5.1.5) in
terms of the polarization vector and the ratio of electric to total energy. Using
the expressions (2.3.10) and (2.3.11), this gives

DAµν(k) =
∑
M

DAµν
M (k), (5.1.6)

DAµν
M (k) = −iπµ0

RM (k)
|ωM (k)|

[
eµM (k)e∗ν

M (k) δ
(
ω − ωM (k)

)
+e∗µ

M (k)eνM (k) δ
(
ω + ωM (−k)

)]
. (5.1.7)

The radiation field in the modeM follows by retaining only the resonant part
(5.1.7) due to the mode M into the solution (5.1.2) of the inhomogeneous
wave equation.

5.1.2 4-momentum radiated

The 4-momentum radiated is identified as the 4-momentum transferred to
the electromagnetic field by the extraneous current. The source term for 4-
momentum in the electromagnetic field is Jα(x)Fαµ(x), cf. (2.4.14). Identi-
fying J as the extraneous current Jext, and averaging this quantity over a
normalization (or truncation) time, T , gives

1
T

∫
d4xJα

ext(x)Fα
µ(x) =

1
T

∫
d4k

(2π)4
Re [−ikµJα

ext(k)Aα(k)], (5.1.8)

where the power theorem (1.3.4) is used, and where Re denotes the real part.
On inserting the solution (5.1.2) with (5.1.7) into (5.1.8), the integral over k0 is
performed over the δ-function in (5.1.7). The positive and negative frequency
solutions make equal contributions. The rate dPµ

M (k)/dt = Qµ
M (k) at which

4-momentum in waves in the mode M in the range d3k/(2π)3 is radiated is
identified as

Qµ
M (k) =

µ0RM (k)
TωM(k)

kµ
M |e∗Mα(k)Jα

ext(kM )|2, (5.1.9)

where the limit T → ∞ is implicit.
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The formula (5.1.9) is quite general in that it describes emission in an
arbitrary wave mode due to an arbitrary source, described by its extraneous
current. To apply (5.1.9) to a specific emission process, one identifies the
appropriate extraneous current and specifies the relevant waves by identifying
the wave properties k = kM , eµM (k) and RM (k).

5.1.3 Probability of emission

The wave 4-momentum is related to the occupation number NM (k) by,
Pµ

M (k) = kµ
MNM (k), cf. (2.4.16). Noting that Qµ

M (k) is proportional to kµ
M ,

according to (5.1.9), the constant of proportionality is the rate of change of
the occupation number. This rate is identified as the probability per unit
time of spontaneous emission of a wave quantum. Denoting this probability
by wM (k), it is defined by writing

Qµ
M (k) = kµ

MwM (k). (5.1.10)

Then (5.1.9) implies

wM (k) =
µ0RM (k)
T |ωM(k)| |e

∗
Mα(k)Jα

ext(kM )|2. (5.1.11)

With wM (k) is the probability per unit time of emission of a wave quantum
per unit volume of k-space. (In ordinary units, there is a power of h̄ in the
denominator on the right hand side of (5.1.11), and the dimensions of wM (k)
are L3T−1.)

The normalization time, T , in (5.1.11) is treated in two different ways,
depending on whether the emission is continuous or impulsive. Processes in-
volving continuous emission are due to continuous or periodic currents so
that Jµ

ext(k) includes a δ-function or a sum of δ-functions. When inserted in
(5.1.9) the square of a δ-function of frequency appears and, in accord with
(1.3.12), this is replaced by T/2π times the δ-function. Thus, for continu-
ous or periodic emission, the truncation time, T , cancels the 1/T in (5.1.9).
For impulsive emission processes it is appropriate to consider the probability,
pM (k) = TwM (k), rather that the probability per unit time, for the emission
a wave quantum. For impulsive emission it is appropriate to integrate over
time, rather than to average over time, as in (5.1.8).

5.1.4 Probability for Cerenkov emission

Cerenkov emission is the simplest continuous emission process. It is due to
a particle in constant rectilinear motion at a speed greater than the phase
speed of waves in the medium. Cerenkov emission of longitudinal waves is a
particularly important process in a plasma.

Consider a charge in constant rectilinear motion such that its orbit is
x = X(τ) with X(τ) = x0 + uτ where x0 describes the initial conditions and
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Fig. 5.1. The semiclassical description of Cerenkov emission is illustrated diagram-
matically. The solid line represents the emitting particle with the arrow pointing
from the initial to the final state. The dashed line represents the emitted wave
quantum. The labels are the 4-momenta of the initial and final states of the particle
and of the wave quantum. Conservation of 4-momentum requires p′ = p − k.

u is the (constant) 4-velocity. The corresponding extraneous 4-current density
is Jµ(x) = q

∫
dτ uµδ4(x− x0 − uτ). Fourier transforming gives

J (0)µ
sp (k) = quµe−ikx0 2πδ(ku). (5.1.12)

On identifying the extraneous current in (5.1.11) as the current (5.1.12), the
square of the δ function gives [δ(ku)]2 = (T/2πγ) δ(ku). The probability for
Cerenkov emission reduces to

wM (k, p) =
q2RM (k)
ε0γ|ωM (k)| |e

∗α
M (k)uα|2 2πδ(kMu). (5.1.13)

The probability of emission, being a probability per unit time and per unit
volume of k-space, is necessarily a frame-dependent quantity. The factor γ in
(5.1.13) could be included on the left hand side of (5.1.13) by multiplying the
equation by γ and interpreting γwM (k, p) as the probability of emission per
unit proper time along the orbit of the particle.

5.1.5 Cerenkov condition

The resonance condition expressed by the δ-function in (5.1.13) is ku = 0,
which is referred to as the Cerenkov condition. This Cerenkov condition re-
quires k2 < 0. To see this, consider the rest frame of the particle, where one
has uµ = [1,0]. Thus, in the rest frame the Cerenkov condition requires that
the wave have zero frequency, and hence ω2 − |k|2 is necessarily negative in
this frame. It follows from the fact that k2 = ω2 − |k|2 is an invariant, that a
necessary condition for Cerenkov emission is k2 < 0 in any frame.

In a quantum mechanical approach the resonance condition is interpreted
in terms of conservation of 4-momentum on a microscopic scale. This is illus-
trated diagrammatically in Fig. 5.1 where the initial state of the particle is
on the right and the final state is on the left, which is a semiclassical coun-
terpart of a Feynman diagram. Conservation of 4-momentum requires that
the initial 4-momentum p = mu of the particle be equal to the sum of the
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final 4-momentum p′ of the particle and the 4-momentum kM of the emit-
ted wave quantum. (In ordinary units, the wave 4-momentum is h̄kM , which
becomes kM in natural units.) In the language of quantum field theory, the
particle must be on its mass shell in both the initial and final states. That
is, for the initial state the condition p2 = m2 is satisfied, and for the final
state, with p′ = p− k the condition (p− k)2 = m2 is satisfied. Together these
imply −2pk + k2 = 0 or ku − k2/2m = 0. In the non-quantum limit, the
4-momentum of the wave is assumed negligible in comparison with that of
the particle. On expanding in powers of k, the leading term in the condition
for conservation of energy gives the classical resonance condition becomes
ku = γ(ω − k · v) = 0. Thus, in a semiclassical description, the classical
resonance condition is reinterpreted as the condition for energy-momentum
conservation on a microscopic scale.

5.1.6 Quantum recoil

In the classical theory of emission, energy and momentum are not conserved
automatically, and must be imposed separately, e.g., through a radiation re-
action force. In a collective-medium treatment of wave-particle interactions
in a plasma, conservation of energy and momentum are built in through a
statistical approach. A major advantage of a semiclassical approach is that
conservation of 4-momentum can be imposed at the microscopic level. The
effect on the particle is included through the quantum recoil.

As already noted, conservation of 4-momentum in the form (p− k)2 = m2

implies ku − k2/2m = 0, and the term k2/2m is the quantum correction to
the classical condition ku = 0. This becomes (in ordinary units)

ku− h̄k
2

2m
= γ

[
ω − k · v − h̄

γmc2
(ω2 − |k|2c2)

]
= 0, (5.1.14)

where the recoil term is the term proportional to h̄. The quantum recoil is
the only correction of first order in h̄ that appears when one takes the limit
h̄ → 0 of the fully relativistic quantum theory of wave-particle interactions.
This allows one to include the backreaction on the particle within an other-
wise purely classical theory. Specifically, the quantum recoil is included in the
classical calculation simply by modifying the resonance condition, by making
the replacement

δ(kMu) → δ(kMu− k2
M/2m) (5.1.15)

for the δ-function in (5.1.13). This quantum correction is sufficient for the
development of a semiclassical formalism in §5.2.
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5.2 Quasilinear equations

In the kinetic theory of plasmas, the effect of emission and absorption on the
distributions of waves and particles is described by a pair of kinetic equations,
called the quasilinear equations. The kinetic equation for the waves is a trans-
fer equation that takes account of emission, absorption and propagation. The
kinetic equation for the distribution of particles reduces to a diffusion equa-
tion in momentum space in simple cases. A covariant form for the quasilinear
equations is derived here, both by using a semiclassical approach and also
by using a classical Fokker-Planck treatment. A derivation using the Vlasov
approach is given in §5.4.

5.2.1 Detailed balance

Absorption is related to emission in the sense that to every emission process
there must be a corresponding absorption process such that the two are in
balance in thermal equilibrium. In a quantum mechanical approach this ‘de-
tailed balance’ requirement is imposed at the microscopic level through the
Einstein coefficients. To apply the Einstein relations to the probability (5.1.13)
one first interprets the probability as that for a spontaneous emission event
that involves a transition from an initial particle state, with 4-momentum
p, to a final particle state, with 4-momentum p′ = p − k, where k = kM is
the 4-momentum carried off by the wave quantum. The Einstein coefficients
imply that the probabilities of stimulated emission p → p′ and of true ab-
sorption p′ → p are equal to the probability for spontaneous emission times
the occupation number, NM (k), of the waves. Stimulated emission and true
absorption are referred to collectively as the induced processes, and stimu-
lated emission is sometimes called induced emission. It follows that the basic
probability (5.1.13) suffices to describe both spontaneous emission and the
induced processes.

5.2.2 Transfer equation for waves

Use of the Einstein relations allows a simple derivation of the quasilinear
equations. The argument leading to the transfer equation for the waves is as
follows. The rate per unit time at which wave quanta in the mode M are
emitted in the range d3k/(2π)3 by particles in the range d4p/(2π)4 is

γwM (k, p)
[
1 +NM (k)

] F (p)
(2π)4

d3k

(2π)3
,

where the unit term inside the square brackets describes spontaneous emission
and the other term describes stimulated emission. The corresponding rate for
the true absorption of wave quanta is
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k

pp + k

Fig. 5.2. Landau damping is the inverse of Cerenkov emission and is represented
by a diagram that differs from Fig. 5.1 by having the wave quantum in the initial
state. Conservation of 4-momentum requires p′ = p + k.

γwM (k, p)NM (k)
F (p− k)

(2π)4
d3k

(2π)3
.

The diagram corresponding to the absorption process is illustrated in Fig. 5.2.
The net rate of change of the occupation number follows by integrating
over the distribution of particles. This gives the semiclassical form of the
transfer equation

DNM (k)
Dt

=
∫

d4p

(2π)4
γwM (k, p)

{[
1 +NM (k)

]
F (p) −NM (k)F (p− k)

}
=
∫

d4p

(2π)4
γwM (k, p)

{
F (p) +NM (k) kα ∂

∂pα
F (p)

}
, (5.2.1)

where the derivative denoted D/Dt is along the ray path, and where only the
leading term in an expansion in k is retained in the final form.

The transfer equation ∂µT
µν
M (k) = Sν

M (k) − γM (k)P ν
M (k), cf. (3.6.15),

may be rederived from (5.2.1). After multiplying (5.2.1) by kν
M the right hand

side gives the rate of generation of wave 4-momentum. The wave energy-
momentum tensor is T µν

M (k) = vµ
gM (k)kν

MNM (k), and the 4-momentum in
the waves is Pµ(k) = kν

MNM (k). For the present, suppose that the evolution
of the wave distribution is purely temporal and that the medium is stationary
and uniform, so that we have D/Dt→ d/dt and ∂µT

µν
M (k) → (d/dt)kν

MNM (k),
giving kν

M (D/Dt)NM (k) = ∂µT
µν
M (k). In this way, (5.2.1) leads to the following

form of the transfer equation for wave 4-momentum:

∂µT
µν
M (k) =

∫
d4p

(2π)4
wM (k, p) kν

M

{[
1 +NM (k)

]
F (p) −NM (k)F (p− k)

}
.

(5.2.2)
On making the Taylor expansion in k, one has F (p − k) = [1 − kα∂/∂pα +
· · ·]F (p), which is equivalent to an expansion in h̄, so that only the first order
term remains in the classical limit. In this limit (5.2.2) reduces to

∂µT
µν
M (k) = Sν

M (k) − γM (k)P ν
M (k), (5.2.3)

which reproduces (3.6.15). The source term
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Sν
M (k) =

∫
d4p

(2π)4
kν

M γwM (k, p)F (p) (5.2.4)

describes the effect of spontaneous emission by the distribution of particles.
The absorption coefficient is

γM (k) = −
∫

d4p

(2π)4
γwM (k, p) kα

M

∂F (p)
∂pα

, (5.2.5)

which describes Landau damping.
The absorption coefficient (5.2.5) is equivalent to that derived in terms

of the antihermitian part of the linear response tensor in (2.4.14). To see
this, insert the explicit expression (4.1.5) for the antihermitian part of the
response tensor into (2.4.14), and insert the explicit expression (5.1.13) for
the probability, wM (k, p), for Cerenkov emission into (5.2.5); the resulting
two expressions are equivalent by inspection, showing that Landau damping
is the same as Cerenkov absorption.

The left hand side of the transfer equation (5.2.1) involves the operator
D/Dt which is the derivative along the ray path. In a stationary, uniform
medium this derivative is to be interpreted as vµ

Mg∂µ operating on NM (k, x).
In this case the operator ∂µ has no effect on kν

Mv
µ
Mg, which is moved to its

right in deriving the left hand side of (5.2.2). Now suppose that the medium
is a slowly varying function of time and space. In the absence of emission and
absorption, the wave action is conserved, and the resulting conservation law
corresponds to DNM (k)/Dt = 0 with D/Dt interpreted as

D
Dt

= vµ
Mg(k)∂µ + k̇µ

M

∂

∂kµ
, (5.2.6)

with vµ
Mg(k) = ∂ωM (k)/∂kµ, k̇µ

M = −∂ωM (k)/∂xµ given by the Hamiltonian
equations for a ray, cf. (3.7.2). In the presence of emission and absorption
the transfer equation is given by (5.2.1) with the left hand side interpreted in
accord with (5.2.6).

5.2.3 Quasilinear equation for particles

The quasilinear equation for the particles follows by considering the net rate
at which F (p) changes due to the difference between the gains due to emission
pµ + kµ → pµ and true absorption pµ − kµ → pµ and the losses due to the
inverse processes. Integrating this difference over d3k/(2π)3 gives

dF (p)
dτ

=
∫

d3k

(2π)3
γ
[
wM (k, p+ k)

×
{
F (p+ k)

[
1 +NM (k)

]
− F (p)NM (k)

}
−wM (k, p)

{
F (p)

[
1 +NM (k)

]
− F (p− k)NM (k)

}]
. (5.2.7)
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In (5.2.7), with the inclusion of the factor γ on the right hand side, the com-
bination γwM (k, p) corresponds to the probability of emission per unit proper
time, and hence the derivative on the left hand side is with respect to τ rather
than t. To obtain the classical limit, a Taylor expansion is carried out to sec-
ond order. The leading term independent of NM (k) is of first order, but the
first order terms proportional to NM (k) cancel, and it is essential to retain the
second order terms. (The second order terms independent of NM (k) describe
the effects of the quantum recoil on spontaneous emission, and are considered
separately below.) One finds

dF (p)
dτ

=
∂

∂pµ

[
−Aµ

M (p)F (p) +Dµν
M (p)

∂F (p)
∂pν

]
. (5.2.8)

The term in (5.2.8) that involves Aµ
M (p) = −

∫
[d3k/(2π)3] kµ γwM (k, p), that

is,

Aµ
M (p) = −q

2

ε0

∫
d3k

(2π)3
RM (k)
ωM (k)

|eαM (k)uα|2 kµ
M 2πδ(kMu), (5.2.9)

describes the effect of spontaneous (Cerenkov) emission on the distribution of
particles. The other term in (5.2.8) involves

Dµν
M (p) =

q2

ε0

∫
d3k

(2π)3
RM (k)NM (k)
ωM (k)

|eαM (k)uα|2 kµ
Mk

ν
M 2πδ(kMu), (5.2.10)

which is the quasilinear diffusion coefficient. The term (5.2.10) in (5.2.8) de-
scribes diffusion in momentum space due to the induced emission and absorp-
tion of waves in the mode M . In ordinary units, there is a power of h̄ in the
numerator of (5.2.10), but despite this, the expression is strictly classical: one
may rewrite (5.2.10) as a purely classical expression by interpreting h̄NM (k)
as the wave action.

The coefficients in the quasilinear equation (5.2.8) satisfy the identities

pµA
µ
M (p) = 0 pµD

µν
M (p) = pνD

µν
M (p) = 0. (5.2.11)

These follow from the forms (5.2.9), (5.2.10): the projections in (5.2.11) lead
to integrands proportional to kMp = mkMu, which vanish as a result of the
resonance condition described by the δ-function. The identities (5.2.11) imply
that the factor δ(p2 −m2) in F (p) is unaffected by the differential operators
in (5.2.8), and may be moved to the left of these differential operators.

5.2.4 Conservation of 4-momentum

The pair of equations (5.2.3) and (5.2.8) together conserve 4-momentum. This
is shown by considering the rate of change of the 4-momentum of the particles

∂µT
µν
P =

∫
d4p

(2π)4
pν dF (p)

dτ
, (5.2.12)
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where subscript P refers to the particles. On inserting (5.2.8), partially inte-
grating and inserting the expressions (5.2.9) and (5.2.10), one deduces con-
servation of 4-momentum in the form

∂µT
µν
P + ∂µ

∫
d3k

(2π)3
T µν

M (k) = 0, (5.2.13)

where ∂µT
µν
M (k) is given by (5.2.3) with (5.2.4).

5.2.5 Interpretation of the quasilinear diffusion coefficients

The effect of the quasilinear diffusion equation on a distribution of particles
is described by (5.2.8)–(5.2.10). One implication concerns the mean rate of
change of 4-momentum for particles with a given momentum. Consider

d〈pα〉
dt

=
∫

d4p

(2π)4
γpα dF (p)

dt
=
∫

d4p

(2π)4
pα dF (p)

dτ
. (5.2.14)

On inserting (5.2.8) and partially integrating, (5.2.14) gives

d〈pα〉
dt

=
∫

d4p

(2π)4
F (p)

[
Aα

M (p) +
∂

∂pν
Dαν

M (p)
]
. (5.2.15)

If one writes
d〈pα〉
dt

=
∫

d4p

(2π)4
F (p)

〈
dpα

dτ

〉
M

, (5.2.16)

comparison with (5.2.15) implies〈
dpα

dτ

〉
M

= Aα
M (p) +

∂

∂pν
Dαν

M (p). (5.2.17)

The interpretation of the first term in (5.2.17) is that Aα
M (p) determines the

rate of loss of 4-momentum per unit proper time by a particle due to sponta-
neous emission of waves in the mode M . The rate of loss of 4-momentum per
unit time due to spontaneous emission is Aα

M (p)/γ. The other term in (5.2.17)
describes the average systematic change in 4-momentum per unit proper time
by a particle due to the effect of absorption or induced emission. When the
particles absorb the waves, this term describes the average drift of particles
to higher energies as energy is transferred from the waves to the particles.

5.2.6 Radiation reaction force

The term Aα
M (p) in (5.2.17) corresponds to a radiation reaction 4-force. A

derivation of this terms starts from the rate at which 4-momentum is trans-
ferred from the waves to the particles, which is equal to minus the rate at
which 4-momentum is transferred to the waves by the particles. The source
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terms for 4-momentum implied by Maxwell’s equations is Jα(x)Fαν(x), cf.
(1.2.23). The resulting rate of change of 4-momentum for the distribution of
particles is∫

d4p

(2π)4
γ F (p)

〈
dpµ

dt

〉spon

=
1
T

∫
d4p

(2π)4
γ F (p)

∫
d4k

(2π)4
J∗

α(k)Fαµ(k).

(5.2.18)
Evaluation of the right hand side of (5.2.18) closely parallels the derivation
of (5.1.9). For Cerenkov emission the current is given by (5.1.12) and on
evaluating (5.2.18) explicitly it reduces to the expression (5.2.9) for Aµ

M (p).
This justifies the interpretation of Aµ

M (p) as the 4-force corresponding to the
radiation reaction to spontaneous Cerenkov emission of waves in the mode
M .

5.2.7 Quantum recoil in spontaneous emission

The quantum recoil due to spontaneous emission may be included in the
kinetic equations (5.2.1) and (5.2.8) using only semiclassical arguments. This
leads to an additional term of the same form as the term that describes the
induced processes, with NM (k) replaced by 1

2 in (5.2.1) and (5.2.8).
In deriving the kinetic equation (5.2.8) for the particles, the quantum

correction to spontaneous emission is neglected. Specifically, in the step from
(5.2.7) to (5.2.8) the terms independent of NM (k) are expanded according to

wM (k, p+ k)F (p+ k) − wM (k, p)F (p) = D̂(1 + 1
2D̂ + · · ·)[wM (k, p)F (p)],

with D̂ = kα∂/∂pα, but only the leading term is retained. The next order
term, involving 1

2D̂ is of the same order in the expansion as the term in the
quasilinear equation that describes the induced effects. Including the term
involving 1

2D̂ effectively includes the quantum recoil in spontaneous emission.
Before considering this term further, it is necessary to clarify the definition of
the probability, wM (k, p), when the recoil is taken into account.

As already noted, the quantum recoil can be included in the probability
simply by replacing the classical resonance condition by the resonance condi-
tion with the recoil term included, as in (5.1.15). The resonance condition for
the two transitions included in (5.2.7) is ω− ε+ ε′ = ω− D̂(1− 1

2D̂+ · · ·)ε for
p↔ p− k, and ω− ε′′ + ε = ω − D̂(1 + 1

2D̂+ · · ·)ε for p+ k↔ p, which have
opposite signs for the recoil term. One may regard the classical probability,
in which the recoil term is absent, as half the sum of these two terms, which
corresponds to

wcl
M (k, p) = wM (k, p+ 1

2k) = (1 + 1
2 D̂)wM (k, p).

The terms independent of NM (k) in (5.2.7) give

wM (k, p+ k)F (p+ k) − wM (k, p)F (p) = D̂[wcl
M (k, p)(1 + 1

2D̂)F (p)],
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to the order retained. (The superscript ‘cl’ denoting the classical probability
is now redundant.) This shows how the recoil due to spontaneous emission
is included in the quasilinear equation for the particles. Consistency requires
that the recoil term be included in the same way in the kinetic equation for the
waves. Thus, rather than considering only the transition p ↔ p− k, as done
in deriving (5.2.1), one needs to average over the transitions p + k ↔ p and
p ↔ p − k. The foregoing argument implies that when the recoil is included
in spontaneous emission, (5.2.1) is replaced by

DNM (k)
Dt

=
∫

d4p

(2π)4
γwM (k, p)

{
F (p) + [NM (k) + 1

2 ] kα ∂

∂pα
F (p)

}
(5.2.19)

The recoil term in (5.2.19) is intrinsically quantum mechanical, and it is in-
teresting that it can be derived by semiclassical arguments.

5.2.8 Covariant Fokker-Planck equation

The quasilinear equation can be derived by purely classical methods, without
appealing to detailed balance. A classical derivation of the transfer equation
(5.2.2) for the waves is implicit in the derivation of (3.6.15). A purely classical
derivation of the quasilinear equation (5.2.8) for the particles follows from a
Fokker-Planck approach.

A covariant form of the Fokker-Planck equation is

dF (p)
dτ

= − ∂

∂pµ

[〈
dpµ

dτ

〉
F (p)

]
+

1
2

∂2

∂pµ∂pν

[〈
d(pµpν)
dτ

〉
∂F (p)
∂pν

]
, (5.2.20)

where the derivative on the left hand side is to be interpreted according to
d/dτ = uα∂α. The quantities involving angular brackets on the right hand
side are the Fokker-Planck coefficients.

The term 〈dpµ/dτ〉 = 〈dpµ/dτ〉spon+〈dpµ/dτ〉ind includes two qualitatively
different contributions, 〈dpµ/dτ〉spon, which is the radiation reaction term due
to spontaneous emission calculated above, and 〈dpµ/dτ〉ind, which is due to
induced emission. The final term in (5.2.20) describes the diffusive effect of
the induced processes, and 〈dpµ/dτ 〉ind is related to this term.

5.2.9 Second Fokker-Planck coefficient

Consider the first order perturbation in the 4-velocity, and hence in the 4-
momentum, due to the presence of the waves. This perturbation is given by
(3.3.7):

p(1)µ(τ) = iq
∫ τ

0

dτ ′
∫

d4k

(2π)4
e−ikx0−iku τ ′

kuGµν(k, u)Aν(k). (5.2.21)
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The second Fokker-Planck coefficient in (5.2.20) is obtained from the average
rate of change per unit proper time of the outer product of this perturbation
with itself. On taking the product of p(1)µ(τ) with its complex conjugate,
with τ ′, k replaced by τ ′′, k′, one averages over the initial value x0 using∫
d4x0 e

i(k′−k)x0 = (2π)4 δ4(k′ − k). In this way one finds

〈
p(1)µ(τ)p(1)ν(τ)

〉
=
q2

TV

∫ τ

0

dτ ′
∫ τ

0

dτ ′′
∫

d4k

(2π)4
e−iku (τ ′−τ ′′)

×(ku)2Gµα(k, u)Gνβ(k, u)Aα(k)A∗
β(k). (5.2.22)

Rearranging the integrals over proper time gives∫ τ

0

dτ ′
∫ τ

0

dτ ′′ e−iku c(τ ′−τ ′′) = τ
∫ τ

−τ

dτ ′ e−iku τ ′
. (5.2.23)

The factor of τ in (5.2.23) is taken over to the left hand side of (5.2.22), and
the second Fokker-Planck coefficient in (5.2.20) is identified as

〈
d(pµpν)
dτ

〉
= lim

τ→∞

[〈
p(1)µ(τ)p(1)ν(τ)

〉
τ

]
. (5.2.24)

Using Gµν(k, u) = gµν − kµuν/ku, one finds〈
d(pµpν)
dτ

〉
=
q2

TV

∫
d4k

(2π)4
2πδ(ku) kµkν |Aα(k)uα|2. (5.2.25)

The final step in the evaluation of the second Fokker-Planck coefficient is to
substitute the expression for the amplitude for waves, cf. (2.4.2) with (2.4.10),
into (5.2.25). Then (5.2.25) reduces to〈

d(pµpν)
dτ

〉
=

2q2

ε0

∫
d3k

(2π)3
RM (k)NM (k)
ωM (k)

|eαM (k)uα|2 kµ
Mk

ν
M 2πδ(kMu).

(5.2.26)

5.2.10 First Fokker-Planck coefficient

The first Fokker-Planck coefficient in (5.2.20) is separated into the contribu-
tion (5.2.22) due to spontaneous emission and a contribution due to the in-
duced processes, 〈dpµ/dτ 〉ind. The latter is derived in a similar way to (5.2.26)
by starting from the second order term in the expansion of the 4-velocity and
hence in the 4-momentum. This is obtained by integrating (3.3.8) with respect
to proper time. The identification

〈
dpµ

dτ

〉ind

= lim
τ→∞

[〈
p(2)µ(τ)

〉
τ

]
(5.2.27)
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is made. A calculation similar to that leading to (5.2.23) gives

〈
dpµ

dτ

〉ind

=
1
2
∂

∂pν

〈
d(pµpν)
dτ

〉
. (5.2.28)

The two terms (5.2.26) and (5.2.28) in (5.2.20) reproduce the diffusive term
in the quasilinear equation (5.2.8) with (5.2.9).
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5.3 Specific emission processes

In this section examples of emission processes in an unmagnetized medium
are discussed: Cerenkov emission, appearance emission and bremsstrahlung.

5.3.1 Power radiated in Cerenkov emission

The power radiated in transverse waves due to Cerenkov emission in the rest
frame of an isotropic medium is derived from (5.1.13) as follows. The disper-
sion relation, |k|/ω = n(ω), for transverse waves for an isotropic dielectric
follows by inserting the expression (1.7.7) for ΠT (k) into the dispersion equa-
tion n2 = 1 + µ0Π

T (k)/ω2, giving n(ω) = [ε(ω)µ(ω)]1/2. The ratio of electric
to total energy, R(k), follows from (2.3.18). For present purposes it is conve-
nient to write these wave properties in the form

|k|
ω

= n(ω), R(k) =
1

2n(ω)d[ωn(ω)]/dω
, (5.3.1)

without specifying the function n(ω). The polarization of the emitted trans-
verse radiation may be described in general by calculating the probability for a
specific transverse polarization, corresponding to polarization 4-vector eµ say,
and then writing the probability of emission as a polarization tensor, which
has a matrix representation of the form (2.5.18). For example, the probability
(5.1.11) becomes the polarization tensor

wαβ(k) =
µ0R(k)
Tω

J∗α
extT (k)Jβ

extT (k), (5.3.2)

where the subscript T denotes that only the part projected onto the transverse
plane is retained. For many emission processes the identification of the polar-
ization is either trivial or of no interest. For example, for Cerenkov emission,
the 3-current is along the velocity of the particle, v, and hence the polarization
is linear along the projection of v onto the plane orthogonal to k.

When the polarization is of no interest, one sums over the two states
of transverse polarization. The sum follows from (2.5.21), viz.

∑
pol e

∗µeν =
−T µν(k, ũ). The power radiated is given by multiplying the probability of
emission per unit time by the energy per wave quantum, ω (h̄ω in ordi-
nary units), and integrating over

∫
d3k/(2π)3. The variables of integration

are changed to ω and the solid angle about the direction of k. One obtains

P = r0v2me

∫ 1

−1

d cos θ
∫ ∞

0

dω ω2n(ω) sin2 θ δ
(
ω[1 − n(ω)v cos θ]

)
, (5.3.3)

where the integral over azimuthal angle is trivial and where θ is the angle
between k and v. The cos θ-integral is performed over the δ-function, which
implies cos θ = 1/n(ω)v. Thus one obtains (in ordinary units with β = v/c)
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P =
q2β

4πε0c

∫
n(ω)β>1

dω ω

(
1 − 1

n2(ω)β2

)
. (5.3.4)

In familiar dielectrics, such as air, glass and water, n(ω) is a slowly varying
function of ω at optical frequencies, and then (5.3.4) implies a power per
unit frequency that increases roughly proportional to the frequency. The im-
plied excess of blue over red light accounts for the characteristic blue color of
Cerenkov emission.

5.3.2 Appearance emission

Another emission process that is related to Cerenkov emission occurs when
a charged particle appears (or disappears), resulting in appearance emission.
This is the simplest example of an impulsive emission process. The most fa-
miliar example of appearance emission is in beta decay, where the electron
suddenly appears.

The current associated with appearance emission starts suddenly when the
particle appears. This current follows from the current (5.1.12) for a particle in
constant rectilinear motion by separating it into two parts, one corresponding
to positive times and the other to negative times, and discarding the latter.
This separation is achieved using the step function, H(t), to write

Jµ(x) = J (+)µ(x) + J (−)µ(x), J (±)µ(x) = Jµ(x)H(±t). (5.3.5)

On using the Fourier transform (1.3.14) of the step function and the convolu-
tion theorem (1.3.6), the current (5.1.12) gives

J (0)µ
sp (k) = J (+)µ

sp (k) + J (−)µ
sp (k), J (±)µ

sp (k) = ± iqu
µe−ikx0

ku± i0 , (5.3.6)

where the + sign refers to the part for t > t0 and the − sign refers to the
part for t < t0, with x0 = [t0,x0] specifying the initial conditions (the particle
creation event). Note that (5.3.6) implies kµJ

(±)µ
sp (k) �= 0, that is, the charge

continuity relation is not satisfied. This reflects the fact that charge is not
conserved when a charge suddenly appears. (Of course, in practice charge is
conserved, in say the decay of the neutron, due to the simultaneous appearance
of a proton; however, the proton can be neglected in treating the emission.)

On evaluating (5.3.6) using the Plemelj formula (1.3.20), only the prin-
cipal value part contributes. Then the emission formula (5.1.11) gives the
probability, p(k) = Tw(k), of emission of a transverse wave quantum:

p(k) =
2πr0m2

e

ω

|e∗ · v|2
|ω − k · v|2 . (5.3.7)

The energy radiated in appearance emission is evaluated by multiplying the
probability by ω, integrating over k-space, and summing over the two states
of polarization, as in the derivation of (5.3.3).
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Let E(ω)dω be the energy emitted in the range dω. Explicit evaluation
gives (in ordinary units with β = v/c)

E(ω) =
r0mec

π

[
1
β

ln
(

1 + β
1 − β

)
− 2
]
. (5.3.8)

The emission per unit frequency is independent of ω, and this implies an
ultraviolet catastrophe. Elementary quantum mechanical ideas imply that no
emitted photon can have a momentum, |k|, in excess of the momentum, |p| =
meγβ, of the electron, and hence the integral should be cut off to ensure
|k| ≤ |p|, and ω < (γ − 1)me.

5.3.3 Transition radiation

An emission process that is related to appearance or disappearance emis-
sion is transition radiation, which occurs when a charged particle passes from
one medium to another. The simplest example is a charge passing through a
perfectly-reflecting metal foil. This involves the disappearance, from the half
space on one side of the foil, of the currents associated with the charge and
with its image in the foil, and the appearance, in the half space on the other
side of the foil, of the currents due to the charge and its image in the foil. Both
the disappearance and appearance occur at the instant at which the charge
crosses the foil. Only the principal value part of the current appears in either
case, and this is the same for appearance and disappearance. Hence, transition
radiation is equivalent to disappearance emission in two half-spaces.

To treat transition radiation at a more general interface between two media
one needs to take account of the Fresnel reflection coefficient to determine the
properties of the image that disappears and of the image that appears at
the instant the interface is crossed. This generalization may be treated in an
analogous way: the currents associated with the particle and all its images
change abruptly as the interface is crossed.

5.3.4 Electron-ion collisions

Bremsstrahlung emission in nonrelativistic plasmas is dominated by interac-
tions between electrons and ions. A detailed nonrelativistic classical treatment
of bremsstrahlung requires that one assume a hyperbolic orbit for the electron
about the ion. This leads to relatively cumbersome expressions describing the
emission, and for most purposes approximate forms suffice. Many of the details
can be removed from the analysis and regarded as a separate calculation, of
the so-called the Gaunt factor. Bremsstrahlung due to electron-ion collisions is
treated here in two simple approximations: the impulsive approximation and
the straight-line approximation. The Gaunt factor is then discussed briefly.

In the approximation in which the electron-ion mass ratio is assumed infi-
nite, the ion is effectively a fixed scattering center. Consider an electron with
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initial 4-velocity uµ that passes a scattering center with impact parameter b,
resulting in a final 4-velocity u′µ. The energy of the electron in the initial and
final states is the same, and γ′ = γ implies v′ = v. The scattering angle, χ, is
defined by

β · β′ = β2 cosχ. (5.3.9)

The relation between χ and the impact parameter for a Coulomb interaction
is (in ordinary units)

tan 1
2χ =

b0
b
, b0 =

Zir0
γβ2

, (5.3.10)

where r0 = µ0e
2/4πm is the classical radius of the electron. The parameter

b0 corresponds to the impact parameter that leads to a deflection through
χ = π/2.

The differential cross section for scattering into an element d2Ω of solid an-
gle is dσ/d2Ω = b db/d cosχ. The differential scattering cross section becomes
(in ordinary units)

dσ

d2Ω
=
Z2

i r
2
0(1 − β2 sin2 1

2χ)
4γ2β4 sin4 1

2χ
. (5.3.11)

In the nonrelativistic limit, γ ≈ 1, (5.3.11) reduces to the Rutherford cross
section.

5.3.5 Bremsstrahlung: the impulsive model

An approximate treatment of bremsstrahulung involves regarding a collision
as causing an impulsive change in the current associated with the motion of
the electron. Bremsstrahlung is then equivalent to a form of disappearance
and appearance emission, with the charge prior to the collision disappearing
and the charge instantaneously reappearing after the collision.

Let the initial 4-velocity be uµ and let this change to u′µ abruptly at τ = 0.
The corresponding 4-current is

Jµ(k) = iqeikx0

(
u′µ

ku′ + i0
− uµ

ku− i0

)
. (5.3.12)

Using the Plemelj formula (1.3.20) in the form 1/(ku ± i0) = ℘(1/ku) ∓
iδ(ku), the resonant part of (5.3.12) gives the current associated with Cerenkov
emission, which is of no interest here. Only the principal value terms are
retained in (5.3.12) when applying it to bremsstrahlung.

On inserting the current (5.3.12) into the emission formula (5.1.11), one
obtains the probability for emission of a wave quantum in a single impulsive
event. Bremsstrahlung due to electron-ion collisions results from many colli-
sions that a given electron experiences with ions. The differential cross section
for emission of a wave quantum through bremsstrahlung is given by multiply-
ing the probability of emission by the cross section for the collision. Collisions
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with impact parameter between b and b+ db lead to a contribution 2πb db to
the cross section. It follows that the differential cross section for emission of
a wave quantum due to the current (5.3.12) is

dσ = 2πb db
e2RM (k)
ε0ωM (k)

∣∣∣∣eM (k) ·
(

v′

ωM (k) − k · v′ −
v

ωM (k) − k · v

)∣∣∣∣
2
d3k

(2π)3
.

(5.3.13)
The dependence of the current on the impact parameter is implicit through
(5.3.9) and (5.3.10).

For transverse waves, with wave properties given by (5.3.1), the power
radiated per unit frequency, P (ω), follows by writing the power radiated as
P =

∫∞
0 dω P (ω), and proceeding as in the derivation of (5.3.3). One finds

P (ω) =
∑

i

Z2
i nir0mevω

2π|k|

∫
db b

∫
d2Ω

∣∣∣∣k ×
(

v′

ω − k · v′ −
v

ω − k · v

)∣∣∣∣
2

,

(5.3.14)
where the sum is over all species of ion, with the ith species having charge
Zie and number density ni. The integral gives∫

d2Ω
∣∣∣∣k ×

(
v′

ω − k · v′ −
v

ω − k · v

)∣∣∣∣
2

= 8π
[
∆2 + a2 sin2 1

2χ

2∆a sin 1
2χ

ln
∣∣∣∣∆+ a sin 1

2χ

∆− a sin 1
2χ

∣∣∣∣− 1
]
, (5.3.15)

with ∆2 = 1 − a2 cos2 1
2χ, a = |k|v/ω. On using (5.3.10), (5.3.14) reduces to

(in ordinary units)

P (ω) =
∑

i

Z2
i ni

16
3
n(ω)r30mec

3

v

π√
3
G(v, ω), (5.3.16)

where inclusion of the factor π/
√

3 in the definition of the Gaunt factor,
G(v, ω), is conventional. The Gaunt factor in this case is given by

π√
3
G(v, ω) =

3
4a2

∫
d sin 1

2χ

sin3 1
2χ

[
∆2 + a2 sin2 1

2χ

2∆a sin 1
2χ

ln
∣∣∣∣∆+ a sin 1

2χ

∆− a sin 1
2χ

∣∣∣∣− 1
]
.

(5.3.17)
For small sin 1

2χ, expanding the quantity inside the square brackets in (5.3.17)
gives 4a2 sin2 1

2χ/3(1−a2). The integral is logarithmically divergent and needs
to be cut off at small and large values. It is convenient to introduce minimum
and maximum impact parameters and to cut the integral off outside the range
b1 < b < b2, resulting in a logarithmic factor ln(b2/b1).

The impulsive approximation allows one to treat the low-frequency emis-
sion due to encounters in which the scattering angle is not necessarily small.
The impulsive approximation is invalid at frequencies, ω∼>v/b, higher than the
inverse of the interaction time ∼ b/v.
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O

P

P0b

b + tv

Fig. 5.3. The orbit of an electron past an ion at the origin O is illustrated in the
straight line approximation. The electron is at P0 at time t = 0 and at P at time t.

5.3.6 Bremsstrahlung: the straight line approximation

The straight line approximation for bremsstrahlung is based on a perturba-
tion expansion in which the zeroth order orbit of the electron is assumed to be
constant rectilinear motion. The expansion parameter is effectively the scat-
tering angle. The effect of the Coulomb field of an (infinitely massive) ion
on the electron is taken into account to first order. The first order current
describes the acceleration due to the Coulomb field, and this acceleration has
components both along the unperturbed orbit and perpendicular to it in the
scattering plane.

The unperturbed orbit is described by

X(0)µ(τ) = xµ
0 + uµ

0 τ, xµ
0 = [0, b], (5.3.18)

where uµ
0 is assumed constant. The orbit is illustrated in Fig. 5.3. The impact

parameter, b, is equal to the position vector of the electron relative to the
ion at the point of closest approach in this approximation, and the scattering
plane is that containing b and v, which are orthogonal.

The first order perturbation, X(1)µ(τ), in the orbit is needed to determine
the first order current (3.3.5). The equation of motion may be written in terms
of the 4-force,

me
duµ(τ)
dτ

= Fµ(τ), Fµ(τ) = [γ(τ)v(τ) · F (τ), γ(τ)F (τ)], (5.3.19)

with u0(τ) = γ(τ), u(τ) = γ(τ)v(τ). and with the 3-force identified as the
Coulomb force

F (τ) = −Zir0meX(τ)
|X(τ)|3 . (5.3.20)

The first order equation of motion is found by inserting the zeroth order orbit
into the right hand entries in (5.3.19):
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dγ(1)(τ)
dτ

= −Zir0γ0X0(τ) · v0

|X0(τ)|3
,

du(1)(τ)
dτ

= −Zir0γ0X0(τ)
|X0(τ)|3

, (5.3.21)

with u(1)(τ) = γ0v
(1)(τ) + γ(1)(τ)v0. It is not necessary to solve (5.3.21)

explicitly to find the first order current; it suffices to partially integrate in
(3.3.5) to find (q = −e)

J (1)µ(k) =
ie e−ikx0

ku0

∫
dτ e−iku0 τ Gµν(k, u0)

du
(1)
ν (τ)
dτ

. (5.3.22)

The current (5.3.22) is inserted into (5.1.11) to find the probability of emission
due to bremsstrahlung.

The integral in (5.3.22) with (5.3.18) and (5.3.21) is evaluated in terms of
Macdonald functions Kν(z), through the integral representation

Kν(xz) =
Γ (ν + 1

2 )(2z)ν

2xνΓ (1
2 )

∫ ∞

−∞
dt

e±ixt

(t2 + z2)ν+1/2
. (5.3.23)

The properties of Macdonald functions are discussed in §4.2. In particular
they satisfy K−ν(z) = Kν(z) and the recursion relations (4.2.10), (4.2.11).

The power radiated per unit frequency per electron in transverse waves is
(in ordinary units)

P (ω) =
∑

i

Z2
i ni

4n(ω)r30meω
2

γ2β3

∫
db b

∫ 1

−1

d cos θ

×
[
(cos2 θ + 1

2 sin2 θ)K2
1 (X) + sin2 θK2

0(X)
]
, (5.3.24)

with X = bω[1 − n(ω)β cos θ]/v, where θ is the angle between k and v.
The integral over b in (5.3.24) can be evaluated using the standard integral∫

dzz K2
ν(z) =

z2

2
[
K2

ν(z) −Kν−1(z)Kν+1(z)
]
. (5.3.25)

The main contribution is when the argument of the Macdonald functions is
small, where they diverge. Specifically, for n an integer and either small or
large z (4.2.13), (4.2.14) imply

Kn(z) ≈
{

ln (2/Γz) for n = 0,
1
2 (2/z)n for n > 0,

Kν(z) ≈
( π

2z

)1/2

e−z, (5.3.26)

respectively, where Γ = 1.7811 . . ., where γ = lnΓ = 0.57721 . . . is Euler’s
constant. Hence, the power per unit frequency diverges at small ω. Only the
dominant logarithmic term (from ν = 0) need be retained in this limit. Cutting
the b-integral off outside the range b1 < b < b2. leads to an expression of the
form (5.3.16) with the Gaunt factor given by
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π√
3
G(v, ω) =

3
4γ2

(
2

a2(1 − a2) − 1
a3

ln
∣∣∣∣1 + a
1 − a

∣∣∣∣
)

ln
(
b2
b1

)
, (5.3.27)

with a = (|k|v/ω). The result (5.3.27) is a relativistic generalization of a
standard nonrelativistic approximation to the Gaunt factor. For γ → 1, a→ 0,
the coefficient of ln(b2/b1) in (5.3.27) tends to unity.

The straight line approximation applies in the limit where the deflection of
the electron by the ion is small. It complements the impulsive approximation
which applies even when the scattering angle is not necessarily small.
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5.4 Fluctuations and the collision integral

In a plasma, the random motions of all the particles generate fluctuations in
the electromagnetic field. These fluctuations perturb the distribution func-
tions of the particles. The effects of the fluctuating field on the particles are
interpreted as ‘collisional’ effects, and they are described by a collision integral
in a quasilinear-type equation.

In this section, the form of the collision integral is identified using an
argument based on the probability for a binary interactions between particles.
However, there is no classical single-particle technique for calculating this
probability directly. The collision integral is also derived using the theory of
fluctuations. Comparison of the two derivations allows one to identify the
probability of a collision.

5.4.1 Form of the collision integral

Consider the effect of collisions between particles of species i and j on the
distribution function, Fi(p1), for species i. Consider a collision with a mo-
mentum transfer k, such that the 4-momentum of the particle of species
i changes from p1 to p′1 = p1 − k, and the 4-momentum of the particle
of species j changes from p2 to p′2 = p2 + k. Suppose that the probabil-
ity of such a collision is known. Detailed balance requires that the same
probability describes the transition p′1, p

′
2 → p1, p2. The effect of the tran-

sitions on the distribution Fi(p1) can be determined by noting that each
transition p1, p2 → p′1, p′2 decreased the number of particle at p1 by unity,
and each transition p′1, p

′
2 → p1, p2 increases it by unity. Let the proba-

bility, Wij(p1, p2, k) say, be defined such that the rate of change of Fi(p1)
is determined by integrating Wij(p1, p′2, k)[Fi(p1)Fj(p2) − Fi(p′1)Fj(p′2)] over
d4k/(2π)4, d4p2/(2π)4. This is not the conventional definition of a scattering
probability, wij(p1,p2,k), which is the probability that particles with initial
4-momenta p1, p2 be scattered into ranges d3p′

1/(2π)
3, d3p′

2/(2π)
3 about final

4-momenta p′1, p
′
2. Translating from one notation to the other gives∫

dω

2π
Wij(p1, p2, k) = γ1γ2 wij(p1,p2,k). (5.4.1)

It is convenient to use Wij(p1, p2, k) in deriving the covariant form for the
collision integral.

Assuming k � p1, p2 one may make a Taylor series expansion in k. As in
the derivation of the quasilinear equation for the particles in §5.2, to obtain
a meaningful result one needs to include gains and losses from transitions
p1 + k ↔ p1, as well as transitions p1 ↔ p1 − k. Each transition p1 + k, p2 →
p1, p2 − k increased the number of particle at p by unity, and each transition
p1, p2 → p1 − k, p2 + k decreases it by unity. The kinetic equation is



5.4 Fluctuations and the collision integral 193

dFi(p1)
dτ

=
∂

∂pµ
1

{∫
d4k

(2π)4
d4p2
(2π)4

kµkνWij(p1, p2, k)

×
[
Fj(p2)

∂Fi(p1)
∂pν

1

− Fi(p1)
∂Fj(p2)
∂pν

2

]}
, (5.4.2)

where a Taylor expansion is made to second order in k. Equation (5.4.2) is
the covariant form of the collision integral.

Classically, there is no direct method for calculation probability Wij

(p1, p2, k) in (5.4.2). The theory of fluctuations provides an indirect method
of calculation.

5.4.2 Kinetic equation due to fluctuations

The evolution of a distribution of particles on a slow-long scale due to fluc-
tuations on a fast-short scale is discussed in §3.5.5. The evolution may be
described by the kinetic equation

dF̄ (p)
dτ

= −
〈
q δFαβ(x)uβ

∂

∂pα
δF (x, p)

〉
= − ∂

∂pα

〈
q δFαβ(x)uβ δF (x, p)

〉
,

(5.4.3)
where δFαβ(x) is the fluctuating electromagnetic field, the average is over the
fast-short scale, and where the anti-symmetry property, δFαβ(x) = −δF βα(x)
is used to move the derivative with respect to pα to the left. Fourier trans-
forming on the fast-short scale involves writing

δFαβ(x)uβ = −i
∫

d4k

(2π)4
eikx kuGαβ(k, u)Aβ(k), (5.4.4)

and δF (x, p) =
∫
[d4k′/(2π)4]eik

′x δF (k′, p). The next step is to evaluate the
correlation function 〈Aβ(k) δF (k′, p)〉.

5.4.3 Inclusion of the self-consistent field

Fluctuations in the case of ‘bare’ or ‘undressed’ particles are discussed in
§3.5. The undressed (ud) part of the fluctuating distribution function satisfies
ku δFud(k, p) = 0 and it has an autocorrelation function

〈δFud(k, p) δFud(k′, p′)〉 = 2πδ(ku) (2π)4δ4(k + k′) (2π)4δ4(p− p′) F̄ (p).
(5.4.5)

This correlation function implies the correlation function for the single-particle
currents:

〈δJ δJ∗〉µν(k) = q2
∫

d4p

(2π)4
uµuν 2πδ(ku) F̄ (p). (5.4.6)

The generalization to include the fluctuating electromagnetic field starts
with the generalization of ku δFud(k, p) = 0 to include the field. This is essen-
tially the linearized Vlasov equation
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ku δF (k, p) = q kuGµν(k, u)Aν(k)
∂F̄ (p)
∂pµ

. (5.4.7)

The appropriate solution of (5.4.7) is

δF (k, p) = δFud(k, p) + q Gµν(k, u)Aν(k)
∂F̄ (p)
∂pµ

. (5.4.8)

The additional term in (5.4.8), compared with the ud case, leads to an addi-
tional term in the fluctuating current. When (5.4.8) is substituted into

δJµ(k) = q
∫

d4p

(2π)4
uµ δF (k, p), (5.4.9)

the contribution from δFud(k, p) is the same as in the undressed case. After
summing over the contributions from all species, the contribution from the
final term in (5.4.8) gives Πµν(k)Aν(k), where the Vlasov form (4.1.2) for the
response tensor is used. Thus this additional contribution to the current is that
associated with the response of the medium. This is part of the self-consistent
field and not a separate source term. In determining the fluctuating field, the
part arising from δFud(k, p) in (5.4.9) is regarded as the source term, and the
other part is interpreted as the response of the medium. The fluctuations in
the 4-potential are determined by the fluctuations in the 4-current through
the solution (2.1.4) of the wave equation, Aµ(k) = −Dµν(k)Aν(k), which gives

〈AA∗〉µν(k) = Dµρ(k)D∗νσ(k) 〈δJ δJ∗〉ρσ(k), (5.4.10)

where Dµν(k) is the photon propagator.

5.4.4 Quasilinear equation

Before proceeding to the next step in deriving the collision integral it is helpful
to consider how the foregoing theory may be used to derive the quasilinear
equation (5.2.8). This equation describes the evolution, on the slow-long scale,
of the distribution of particles due to resonant interactions with waves. In
this case, the relevant correlation function is for waves in a specific mode,
labeled M . The correlation function involves Aβ(k) from (5.4.4) and Aν(k′)
from (5.4.8). On using 〈Aβ(k)Aν(k′)〉 = 〈AA∗〉βν(k)(2π)4δ4(k + k′), (5.4.3)
becomes an equation of the required quasilinear form,

dF̄ (p)
dτ

=
∂

∂pµ

[
Dµν(p)

∂F̄ (p)
∂pν

]
, (5.4.11)

with the diffusion coefficient given by

Dµν(p) = −iq2
∫

d4k

(2π)4
[kuGµα(k, u)]Gνβ(−k, u)〈AA∗〉αβ(k). (5.4.12)
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To describe the effect of waves in the modeM on the distribution of particles,
one identifies the correlation function with that for waves in the mode M , as
given by (3.5.15).

The integral in (5.4.12) is superficially imaginary, and the diffusion coef-
ficient must be real. A real part arises when the causal condition is imposed.
The only pole in the integrand is from that in Gνβ(−k, u), and the fact that
this has negative k implies that the causal condition is −ku → −ku + i0,
so that the semi-residue of 1/(ku− i0) is iπδ(ku). With this imaginary part,
(5.4.12) gives a real contribution

Dµν(p) = q2
∫

d4k

(2π)4
2πδ(ku) kµkν uαuβ 〈AA∗〉αβ(k). (5.4.13)

On inserting (3.5.15) into (5.4.13), it reproduces the quasilinear diffusion co-
efficient (5.2.10).

5.4.5 Collision integral

There are two contributions to the collision integral, arising from the two terms
in (5.4.8) in (5.4.3). One contribution is analogous to the term retained in the
derivation of the quasilinear equation (5.4.11) with (5.4.13). In the case of
the collision integral, one identifies the correlation function 〈AA∗〉µν(k) with
the fluctuating fields associated with the random motions of the particles, as
given by (5.4.10) with (5.4.6), rather than with a wave field. The contribution
from fluctuations generated by species j to the evolution of F̄i(p2) follows by
including appropriate labels on (5.4.6) and (5.4.10), giving

〈AA∗〉µν(k) = Dµ
ρ(k)D∗ν

σ(k)
∑

j

q2j

∫
d4p2
(2π)4

uρ
1u

σ
2 2πδ(ku2) F̄j(p2),

(5.4.14)
with ui = p1/mi. As in (5.4.12) only a real contribution is relevant and this
is obtained in the same way as in the derivation of the quasilinear equation
(5.4.13). Thus this term leads to a contribution to the collision integral of the
form of the first term inside the square brackets in (5.4.2), with

Wij(p1, p2, k) = 2π2q2i q
2
j δ(ku1)δ(ku2) |Dαβ(k)uα

1u
β
2 |2. (5.4.15)

The final term in the collision integral (5.4.2) comes from the correla-
tion between Aβ(k) in (5.4.4) and the term δFud(k, p) in (5.4.8). In this case
Aβ(k) = −DβγδJ

γ(k) is found by identifying the fluctuating current as in
(5.4.9), and evaluating the resulting correlation function using (5.4.5). This
gives

〈Aβ(k) δFud(k′, p)〉 = (2π)4δ4(k + k′) q 2πδ(ku)Dβγ(k)uγ F̄ (p). (5.4.16)

Again the contribution from this term is superficially imaginary, and one needs
to identify a real part. The relevant contribution is from the antihermitian part
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of the photon propagator in (5.4.16). From the definition (2.1.4) of the photon
propagator, there is an anithermitian part due to the antihermitian part of
the response tensor. This antihermitian part is

DAµν(k) = −D∗µα(k)ΠA
αβ(k)Dβν(k), (5.4.17)

in which one retains only the contribution of species j toΠA
αβ(k). The resulting

contribution to the collision integral gives the second term in square brackets
in (5.4.2), with Wij(p1, p2, k) given by (5.4.15).

This completes the formal derivation of the general form (5.4.2) for the
collision integral, and leads to the identification (5.4.15) of the scattering
probability,Wij(p1, p2, k). Despite the relatively simple form of the probability
(5.4.15), there is no well known direct classical derivation of it. The classical
limit of the result derived using QPD (for Møller scattering) does reproduce
(5.4.15), as shown in §7.6.

5.4.6 Fluctuations in an isotropic plasma

The general form for the scattering probability (5.4.15) may be used to derive
the explicit form for an isotropic plamsa by separating the photon propagator
into its longitudinal and transverse parts, cf. (2.5.1). Using this separation,
the longitudinal and transverse parts of 〈AA∗〉µν(k) are

〈AA∗〉L(k) =
k4

(kũ)4
|DL(k)|2〈δJ δJ∗〉L(k),

〈AA∗〉T (k) = |DT (k)|2〈δJ δJ∗〉T (k), (5.4.18)

respectively. The longitudinal and transverse parts of the correlation function
for the 4-current follow by writing

〈δJ δJ∗〉µν(k) = 〈δJ δJ∗〉L(k)Lµν(k, ũ) + 〈δJ δJ∗〉T (k)T µν(k, ũ). (5.4.19)

With 〈δJ δJ∗〉µν(k) given by (5.4.6), these parts are

〈δJ δJ∗〉L(k) = q2
(kũ)2

k2 − (kũ)2

∫
d4p

(2π)4
2πδ(ku) F̄ (p) (uũ)2,

〈δJ δJ∗〉T (k) =
q2

2

∫
d4p

(2π)4
2πδ(ku) F̄ (p)

[
1 − k2(uũ)2

k2 − (kũ)2

]
, (5.4.20)

where ũ is the 4-velocity of the rest frame of the plasma relative to an arbi-
trarily chosen inertial frame.

5.4.7 Scattering probability in an isotropic plasma

For an isotropic plasma, the factor that appears squared in the scattering
probability (5.4.15) reduces to
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Dαβ(k)uα
1u

β
2 = DL(k)

k4u1ũ u2ũ

(kũ)2[k2 − (kũ)2]
+DT (k)

[
u1u2 −

k2u1ũ u2ũ

k2 − (kũ)2

]
,

(5.4.21)
where ku1 = ku2 = 0 is assumed, and with the longitudinal and transverse
parts of the photon propagator related to the corresponding parts of the re-
sponse tensor by

DL(k) =
(kũ)4

k4

µ0

(kũ)2 + µ0ΠL(k)
, DT (k) =

µ0

k2 + µ0ΠT (k)
. (5.4.22)

These results apply in an arbitrary frame, in which the rest frame of the
plasma is moving with 4-velocity ũ.

In the rest frame of the plasma, (5.4.21) gives

Dαβ(k)uα
1u

β
2 = −µ0γ1γ2

|k|2

[
ω2

ω2 + µ0ΠL(k)
− k × v1 · k × v2

ω2 − |k|2 + µ0ΠT (k)

]
.

(5.4.23)
Then (5.4.15) becomes

Wij(p1, p2, k) = 2π2µ2
0q

2
i q

2
jγ1γ2δ(ω − k · v1)δ[k · (v1 − v2)]

× 1
|k|4

∣∣∣∣ ω2

ω2 + µ0ΠL(k)
+

k × v1 · k × v2

ω2 − |k|2 + µ0ΠT (k)

∣∣∣∣
2

, (5.4.24)

where the numerator in the final terms arises from ω2 − |k|2v1 · v2 by using
the δ-functions to write ω2 = k · v1 k · v2.

The scattering of one particle by another can be interpreted as a transfer
of 4-momentum, k. In an isotropic plasma one may identify this momentum
transfer as being through a virtual longitudinal wave or a virtual transverse
wave, corresponding to terms involving ΠL(k) and ΠT (k), respectively, in
(5.4.24).

5.4.8 Collisions involving nonrelativistic particles

In conventional derivations of the collision integral for nonrelativistic parti-
cles, the simplifying assumption is made that only virtual longitudinal waves
are important. A further simplifying assumption is that the longitudinal re-
sponse function has its low-frequency form, µ0Π

L(k) ≈ ω2/|k|2λ2
D, which

applies for ω2/|k|2V 2
e � 1, where only the contribution of the thermal elec-

trons is assumed important. With this form for ΠL(k), the term involving
ΠL(k) in (5.4.24) becomes ω2/[ω2 + µ0Π

L(k)] → 1/[1 + |k|2λ2
D]. A further

simplification is to replace this term by unity, and to cut off the resulting
logarithmically divergent integral at |k| = 1/λD. The probability integrated
over the momentum transfer then gives

Iab
ij (p1, p2) =

∫
d4k

(2π)4
kakbWij(p1, p2, k)

= πµ2
0q

2
i q

2
j

∫
d3k

(2π)3
kaka

|k|4 δ[k · (v1 − v2)], (5.4.25)
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where a, b label the space components of 4-tensors (and i, j label the species
of particle). The assumption of isotropy requires that the 3-tensor Iab(p1, p2)
have components only along gab and (v1−v2)a(v1−v2)b, due to v1−v2 being
the only 3-vector in the problem, and the identity Iab(p1, p2)(v1 − v2)b = 0
implies that only the combination gab + (v1 − v2)a(v1 − v2)b/|v1 − v2|2 can
appear. With the logarithmically divergent integral replaced by the Coulomb
logarithm, lnΛ, (5.4.25) gives

Iab
ij (p1, p2) =

µ2
0q

2
i q

2
j

8π|v1 − v2|
lnΛ

(
gab +

(v1 − v2)a(v1 − v2)b

|v1 − v2|2

)
. (5.4.26)

The kinetic equation (5.4.2) then takes its nonrelativistic form

dfi(p1)
dt

=
∂

∂pa
1

{
Iab
ij (p1.p2)

[
fj(p2)

∂fi(p1)
∂pb

1

− fi(p1)
∂fj(p2)
∂pb

2

]}
, (5.4.27)

An interpretation of (5.4.26) is in terms of the differential scattering cross
section, dσij . One makes the identification

Iab(p1, p2) = 1
2

∫
dσij k

akb |v1 − v2|, (5.4.28)

where the integral is over solid angle of k. Assuming that small-angle scatter-
ing dominates, one has |k| = mred|v1 − v2|χ, where χ � 1 is the scattering
angle and mred = mimj/(mi +mj) is the reduced mass. The Rutherford cross
section gives dσij = µ2

0q
2
i q

2
jd

2Ω/(2π|v1 − v2|2χ2)2, where d2Ω denotes an el-
ement of solid angle. The integral over solid angle reduces to

∫
dχ/χ, which

is also identified as the Coulomb logarithm. The total cross section is (in SI
units)

σij =
µ2

0q
2
i q

2
j

8πm2
red|v1 − v2|4

lnΛ, (5.4.29)

and the coefficient in (5.4.26) is identified as m2
ij |v1−v2|3σij , where m2

ij |v1−
v2|2 characterizes the transfer momentum squared and |v1 − v2|σij times the
number density of scatterers characterizes the rate of scattering.

5.4.9 Electron-electron collisions in a relativistic plasma

In the opposite limit, when the particles are highly relativistic, one cannot
assume that the dominant momentum exchange is through a virtual longitu-
dinal wave. Momentum exchange through virtual longitudinal and transverse
waves may be interpreted as charge-charge and current-current interactions,
respectively, and for relativistic particles, the current-current interaction is of
the same order as the charge-charge interaction. Moreover, unlike the charge-
charge interaction, the current-current interaction is not affected by Debye
screening, so that when Debye screening is important the current-current in-
teraction can dominate.
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The final term in (5.4.24) may be rewritten by separating v1, v2 into com-
ponents parallel and perpendicular to k. Then one has ω = |k|v1‖ = |k|v2‖,
and |k×v1 ·k×v2|2 = |k|4v21⊥v22⊥ cos2 φ, where φ is an azimuthal angle. In the
isotropic case, only the probability averaged over angles contributes and the
factor cos2 φ in the current-current term is then replaced by 1/2. The inter-
ference between the charge-charge and current-current terms is proportional
to cosφ, and averages to zero. The relative contribution of the charge-charge
and current-current terms can be estimated by inserting appropriate approx-
imations for ΠL,T (k) into (5.4.24) and comparing the magnitudes of the two
terms. General expressions for the response functions for a relativistic thermal
plasma are derived in §4.4, where they are expressed as functions of z = ω/|k|.
The relevant approximation here is for small z, when one has

µ0Π
L(k) ≈ z2

λ2
D

, µ0Π
T (k) ≈ −iπ

2
za(ρ)
λ2

D

, a(ρ) =
ρ+ 1
ρ2

e−ρ

K2(ρ)
, (5.4.30)

with the Debye length defined by λ−2
D = ω2

pρ. Note that the dominant term for
the transverse part is the imaginary part associated with Landau damping.

Further simplification occurs for highly relativistic particles, when one has
v21⊥ = v22⊥ = 1 − ω2/|k|2. For z2 � 1, the ratio of the charge-charge and
current-current terms in (5.4.24) is determined by the ratio of the terms

∣∣∣∣ ω2

ω2 + µ0ΠL(k)

∣∣∣∣
2

≈ 1
|1 + 1/|k|2λ2

D|2
,

∣∣∣∣ k × v1 · k × v2

ω2 − |k|2 + µ0ΠT (k)

∣∣∣∣
2

≈ 1
2

1
1 + (π2/4)a2(ρ)ω2/λ4

D|k|6
, (5.4.31)

The ratio of the contributions of the current-current and charge-charge con-
tributions is determined by two parameters, |k|2λ2

D| and (π2/4)a2(ρ)ω2/|k|2.
In a highly relativistic plasma, ρ� 1, one has a(ρ) ≈ 1/2, and the second pa-
rameter is of order ω2/|k|2, which is necessarily less than unity. It follows that
the contributions of the current-current term is half that of the charge-charge
term for |k|2λ2

D| � 1, and that it is the dominant term for |k|2λ2
D| � 1. The

charge-charge contribution is suppressed by Debye screening for |k|2λ2
D| � 1,

but the current-current term is unaffected.
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5.5 Scattering of waves by particles

The theory of the scattering of waves by particles in the presence of a medium
is developed in this section.

5.5.1 Current associated with scattering

In a medium, the scattering of waves by electrons needs to be generalized
in two ways compared with scattering in vacuo. First, the waves must be
in natural modes of the medium. Moreover, the final or scattered wave can
be in a different mode from the initial or unscattered wave. Here it is as-
sumed that a particle scatters a wave in a mode M ′ into a wave in a mode
M , and that M ′,M may or may not be the same. Second, there is an ad-
ditional contribution to the scattering, called nonlinear scattering. The most
familiar example of nonlinear scattering is associated with Debye screening:
the Coulomb field of a charge at r = 0 is screened at distances much greater
than the Debye length λD. The Fourier transform of this screening field has
components |k|∼>1/λD. Nonlinear scattering is associated with the quadratic
nonlinear response of the plasma to the field of the unscattered wave and
this screening field. In a plasma Thomson scattering and nonlinear scattering
tend to interfere destructively for electrons, so that, under some conditions,
the dominant scattering can be nonlinear scattering by ions.

The current associated with the scattering of waves by a particle consists
of two parts, one associated with Thomson scattering and the other with non-
linear scattering. The current associated with Thomson scattering is the linear
term in the expansion of the single-particle current in the wave field, which is
given by the first order term in the expansion of the single particle current, cf.
§3.3. The current associated with nonlinear scattering is the quadratic non-
linear current due to the beat between the field of the unscattered wave and
the self-consistent field of the scattering particle.

Let the unscattered waves have amplitude Aµ
M ′(k′). The total current can

be written in the same form as the current for Thomson scattering, and this
form is

J (1)µ(k) = −q
2

m

∫
d4k′

(2π)4
ãµ

ν(k, k′, u)Aν
M ′(k′)ei(k−k′)x0 2πδ[(k − k′)u],

ãµν(k, k′, u) = aµν(k, k′, u) + aµν
nl (k, k′, u). (5.5.1)

The n = 1 term in the expansion of the single particle current, cf. (3.3.11)
with (3.3.13) and (3.3.14) gives

aµν(k, k′, u) = gµν − k
νuµ

ku
− k

′νuµ

k′u
+
kk′ uµuν

ku k′u
, (5.5.2)

where the unperturbed orbit of the particle is assumed to be X(τ) = x0 +uτ .
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Fig. 5.4. The semiclassical diagrams for the two contributions to scattering are
(a) Thomson scattering and (b) nonlinear scattering. In (b) the quadratic nonlinear
response is indicated by a shaded circle connecting three dashed lines. Conservation
of 4-momentum requires p′ = p − k + k′.

The current associated with nonlinear scattering is described by the term
aµν
nl (k, k′, u) in (5.5.1). This term involves the self-consistent field associated

with a particle, denoted A(q)µ(k) for a charge q. This field is found by solving
the inhomogeneous wave equation (5.1.1) with the current (5.1.12) due to the
motion of the charge q as the source term. This gives

A(q)µ(k) = −q eikx0 Dµν(k)uν 2πδ(ku). (5.5.3)

The current associated with nonlinear scattering of initial waves in the mode
M ′ follows from the quadratic response in the weak turbulence expansion
(1.4.4). One finds

J (nl)µ(k) = 2
∫
dλ(2)Π(2)µ

νρ(−k, k1, k2)A(q)ν(k1)A
ρ
M ′ (k2), (5.5.4)

with A(q)µ(k) given by (5.5.3), and where dλ(2) denotes the convolution in-
tegral (1.3.7). The current associated with nonlinear scattering in (5.5.1) is
identified from (5.5.4) with (5.5.3) as

aµν
nl (k, k′, u) =

m

q
2Π(2)µνρ(−k, k′, k − k′)Dρα(k − k′)uα. (5.5.5)

The diagrams for the scattering process are shown in Fig. 5.4. Fig. 5.4(b)
describes nonlinear scattering, with the photon line joining the 3-photon ver-
tex, described by the shaded circle, to the photon line corresponding to the
virtual wave. 4-momentum is conserved at each vertex, including the 3-photon
vertex.

5.5.2 Probability for scattering

The scattering is treated by inserting the current in the formula (5.1.11) for the
probability of emission, and interpreting the emitted waves as the scattered
waves. The outer product of the current (5.5.5) with itself appears and needs
to be evaluated. This outer product is of the form
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d4k′

(2π)4
ãµ

ν(k, k′, u)Aν
M ′ (k′) ei(k−k′)x0 2πδ

(
(k − k′)u

)
×
∫
d4k′′

(2π)4
ãα

β(k, k′′, u)Aβ
M ′(k′′) ei(k−k′′)x0 2πδ

(
(k − k′′)u

)〉
,

where the angular brackets denote an average over the initial conditions, x0.
For waves in the mode M the phase average reduces to

〈Aµ
M (k)Aν

M (k′)〉 = (2π)4δ4(k + k′)µ0
RM (k)NM (k)
ωM (k)

×2π
[
eµM (k)e∗ν

M (k) δ
(
ω − ωM (k)

)
+ e∗µ

M (k)eνM (k)δ
(
ω + ωM (−k)

)]
, (5.5.6)

where (2.4.2) and (2.4.10) are used. The 4-momentum radiated is calculated
as in the derivation of (5.1.9), and is written in the form

Qµ
M (k) =

∫
d3k′

(2π)3)
kµ

MwMM ′ (k, k′, p)NM ′(k′) (5.5.7)

to identify the probability for scattering of waves in the mode M ′ into waves
in the mode M . This probability is

wMM ′ (k, k′, p) =
q4RM (k)RM ′(k′) |ãMM ′(k, k′, u)|2

ε20m
2cγ |ωM (k)ωM ′(k′)|

2πδ(kMu− k′M ′u),

ãMM ′ (k, k′, u) = e∗µ
M (k)eνM ′(k′)ãµν(kM , k

′
M ′ , u), (5.5.8)

with ãµν given by (5.5.5).
By inspection (5.5.8) satisfies the relation

wMM ′ (k, k′, p) = wM ′M (k′, k, p), (5.5.9)

which is a crossing symmetry. It implies that the probability for scattering
derived by interchanging the role of the initial and final wave mode (M and
M ′ here) is identical to the probability (5.5.8).

As in the case of the probability of emission, the quantum correction is
included by replacing the argument of the δ-function in (5.5.8) according to

δ(kMu− k′M ′u) → δ
(
kMu− k′M ′u− (kM − k′M )2/2m

)
. (5.5.10)

5.5.3 Kinetic equations for scattering

Using the semiclassical formalism, the kinetic equations for the waves and
the particles are derived by appealing to detailed balance. Consider scat-
tering M ′ → M . In each such scattering event, the occupation number
NM (k) increases by unity, NM ′(k′) decreases by unity and an electron with
4-momentum p changes to p + k′ − k. The rate of transitions M ′ → M is
proportional to
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γwMM ′ (k, k′, p)
[
1 +NM (k)

]
NM ′(k′)

F (p)
(2π)4

d3k

(2π)3
d3k′

(2π)3
.

The same argument together with the crossing symmetry (5.5.9) implies that
the rate of transitions M →M ′ is proportional to

γwMM ′(k, k′, p)NM (k)
[
1 +NM ′(k′)

]F (p+ k′ − k)
(2π)4

d3k

(2π)3
d3k′

(2π)3
.

In the classical limit one expands F (p+ k′ − k) in a Taylor series,

F (p+ k′ − k)
(2π)4

=
(
1 − D̂ + 1

2 (D̂)2 − · · ·
)
F (p), D̂ = (k − k′)α ∂

∂pα
.

The resulting kinetic equations for the waves are obtained by subtracting
these rates, and integrating over k′-space. This gives

DNM (k)
Dt

=
∫

d4p

(2π)4

∫
d3k′

(2π)3
γwMM ′ (k, k′, p)

×
{[
NM (k) −NM ′(k′)

]
F (p) +NM (k)NM ′(k′) (k − k′)α ∂F (p)

∂pα

}
,

(5.5.11)

DNM ′(k′)
Dt

= −
∫

d4p

(2π)4

∫
d3k

(2π)3
γwMM ′(k, k′, p)

×
{[
NM (k) −NM ′(k′)

]
F (p) +NM (k)NM ′(k′) (k − k′)α ∂F (p)

∂pα

}
.

(5.5.12)

The kinetic equation for the particles is derived in a similar manner. The
terms linear in (k − k′)α∂/∂pα cancel and the quadratic terms give

dF (p)
dτ

=
∂

∂pβ

(∫
d3k

(2π)3

∫
d3k′

(2π)3
(k − k′)βγwMM ′(k, k′, p)

×
{[
NM (k) −NM ′(k′)

]
F (p) +NM (k)NM ′(k′) (k − k′)α ∂F (p)

∂pα

})
.

(5.5.13)

Despite the quantum mechanical, (5.5.11)–(5.5.13) are in classical form when
N(k) is interpreted as the classical wave action.

The three terms in the integrands inside the curly brackets in (5.5.11)–
(5.5.13) describe the effect on the waves in mode M of (spontaneous) scatter-
ing M ′ → M , (spontaneous) scattering M → M ′, and of induced scattering
M ′ ↔M , respectively.
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Fig. 5.5. The diagrams for double emission differ from those for scattering, cf.
Fig. 5.2, by having both wave quanta in the final state. Conservation of 4-momentum
requires p′ = p − k − k′.

5.5.4 Double emission and double absorption

Double emission involves emission of two photons simultaneously. This pro-
cess is kinematically forbidden in vacuo, but can occur in a medium. Double
emission, and its inverse, double absorption, are related to the scattering of
waves by a particle by a crossing symmetry. In semiclassical language, wave
quanta in the modes M and M ′ are emitted, or absorbed simultaneously.
This is described diagramatically by Fig. 5.5. A detailed treament of dou-
ble absorption closely parallels the foregoing treatment of scattering, with
the negative-frequency part, rather than the positive-frequency part being re-
tained in (5.5.6). The change kM → −kM converts scattering into double emis-
sion. In view of the crossing symmetries satisfied by the nonlinear response
tensors, cf. (1.4.26), the change kM → −kM does not affect the functional
form of the probability, and the probability for double emission is related to
the probability for scattering simply by reversing the sign of the relevant wave
4-vector. Denoting the probability for double emission by superscript (de), it
is given by

w
(de)
MM ′ (k, k′, p) = wMM ′ (k,−k′, p). (5.5.14)

The kinetic equation for one of the waves in double scattering is

DNM (k)
Dt

=
∫

d4p

(2π)4

∫
d3k′

(2π)3
γw

(de)
MM ′ (k, k′, p)

×
{[
NM (k) +NM ′(k′)

]
F (p) −NM (k)NM ′(k′) (k + k′)α ∂F (p)

∂pα

}
,

(5.5.15)

where the derivative D/Dt is interpreted as in (5.2.6). The kinetic equation
for the other wave mode is obtained from (5.5.15) by interchanging primed
and unprimed quantities.
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5.5.5 Interference between Thomson and nonlinear scattering

Nonlinear scattering and Thomson scattering tend to interfere destructively
for thermal electrons. Nonlinear scattering arises from the final term in (5.5.1),
and is given by (5.5.5), which involves the photon propagator. In an isotropic
plasmas, the propagator separates into longitudinal and transverse parts:

Dµν(k) = DL(k)Lµν(k, ũ) +DT (k)T µν(k, ũ),

DL(k) =
(kũ)4

k4

µ0

ΛL(k)
, DT (k) =

µ0

ΛT (k)
, (5.5.16)

with ΛL(k) = (kũ)2 + µ0Π
L(k), ΛT (k) = k2 + µ0Π

T (k).
In a nonrelativistic thermal plasma the change in frequency in a typical

scattering is |ω′ − ω| ∼ |k′ − k|V , where V = 1/ρ1/2 is the thermal speed
in terms of the inverse temperature ρ, introduced in (4.2.1). This implies
that the beat frequency is typically small, in the sense that the phase speed
|ω′ − ω|/|k′ − k| is small compared with the thermal speed. The relevant ap-
proximation to the quadratic nonlinear response tensor is for fast disturbances
at k, k′ and a slow disturbance at k − k′. The relevant approximate form is
given by (4.7.8):

Π(2)µνρ
us (−k, k′, k − k′) = − e

me
aµν(k, k′, ũ)Lρ(k − k′, ũ)

× [(k − k′)ũ]2 − (k − k′)2
[(k − k′)ũ]2 ΠL(e)(k − k′), (5.5.17)

where the superscript (e) emphasizes that only the contribution of the elec-
trons is retained. The 4-vector Lµ(k, u) is defined by (4.7.6). When using the
unsymmetrized form (5.5.17), the factor 2 in the numerator in (5.5.5) is omit-
ted. With only the longitudinal term in (5.5.17) retained, (5.5.16) leads to the
following approximation in (5.5.1):

ãµν(k, k′, u) = aµν(k, k′, u)

+aµν(k, k′, ũ)
(
em

qme

)
ΠL(e)(k − k′)/ε0

[(k − k′)ũ]2 +ΠL(k − k′)/ε0
. (5.5.18)

The term aµν describes Thomson scattering and the other term describes
nonlinear scattering. The interference between these two terms tends to be
destructive when they have opposite signs and constructive when they have
the same sign. Thus the interference can be destructive for electrons (q = −e,
m = me). For ions Thomson scattering is unimportant. Typically, Thomson
scattering by thermal electrons dominates for wavelengths shorter than the
Debye length and nonlinear scattering by thermal ions dominates for wave-
lengths longer than the Debye length. The cross-section for scattering is similar
in these two cases, and the main difference is that the linewidth associated
with the Doppler broadening in the scattering narrows from that typical of
thermal electrons at shorter wavelengths to that typical of thermal ions at
longer wavelengths.
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5.5.6 Virtual longitudinal and transverse waves

The foregoing discussion of nonlinear scattering is based on (5.5.17) and
(5.5.18) which apply to a nonrelativistic thermal plasma. A somewhat dif-
ferent interpretation of nonlinear scattering that applies more generally is
that based on the notion of virtual waves.

The beat at k−k′ is interpreted as the virtual wave. The longitudinal and
transverse contributions to the propagator are interpreted as contributing
to scattering via a virtual longitudinal wave and a virtual transverse wave,
respectively. A virtual longitudinal wave dominates for slow phase speeds,
which corresponds to z = ω/|k| satisfying z2 � 1 in the notation used in
§4.6. The fact that the phase speed is slow follows from the δ-function in
(5.5.8), which implies that the beat disturbance has a typical phase speed of
order the speed of the scattering particles, giving |ω−ω′|/k−k′| ∼ V = ρ−1/2

in a thermal plasma.
The relative contribution from virtual longitudinal and transverse waves

is roughly in the ratio of 1/ΛL(k) to 1/ΛT (k). In the rest frame of the plasma
one finds

ΛL(k) ≈ ω2

(
1 +

1
|k|2λ2

D

)
, ΛT (k) ≈ −|k|2 + ω2

(
1 − 3

ω2
p0

|k|2

)
,

for ω2 � |k|2. Hence, one has 1/ΛL(k) : 1/ΛT (k) ≈ 1 : −ω2/|k|2 for ω2 �
|k|2 and |k|2λ2

D � 1. Thus scattering involving a virtual transverse wave
is unimportant in a nonrelativistic thermal plasma provided that the beat
disturbance corresponds to a low frequency and a long wavelength, as assumed
in (5.5.17), (5.5.18).

The neglect of virtual transverse waves, and the use of the simplified
form (5.5.17) for the nonlinear response tensor, are not usually justifiable
in a relativistic plasma. This greatly complicates the analysis when nonlinear
scattering is important. An exception is for nonlinear scattering in an electron-
positron plasma where the contributions of the electrons and positrons to the
quadratic nonlinear response tensor tend to cancel. Exact cancelation occurs
only if the distributions of electrons and positrons are identical. In this case
the quadratic nonlinear response tensor is identically zero and nonlinear scat-
tering is strictly absent. Thus in a pair plasma the opposite contributions of
electrons and positrons to the nonlinear quadratic response tensor tends to
suppress nonlinear scattering by electrons or positrons.



5.6 Thomson and inverse Compton scattering 207

5.6 Thomson and inverse Compton scattering

Technically, Thomson scattering is the classical theory of the scattering of
radiation by electrons in vacuo. Compton scattering is the scattering of elec-
trons by photons. However, Compton scattering is often used as a generic term
for electron-photon scattering in vacuo. Somewhat anomalously, Thomson
scattering by highly relativistic electrons is referred to as inverse Compton
scattering.

5.6.1 Thomson scattering in vacuo

The particular case of Thomson scattering of transverse waves in vacuo may
be treated exactly. The probability of Thomson scattering for unpolarized
transverse waves in vacuo follows from (5.5.8) by omitting the nonlinear scat-
tering, inserting M = M ′ = T , RT = 1

2 , k = ω, k′ = ω′. The polarization
4-vectors, eµ, e′µ, for the scattered and unscattered waves appear in a scat-
tering amplitude e∗µe′νaµν(k, k′, u), whose modulus squared appears in the
probability for scattering. The polarization of the scattered and unscattered
radiation can be included explicitly by writing the probability as a polarization
tensor, as is done for emission in (5.3.2). The scattered radiation, due to an
individual scatterer, is polarized even for unpolarized unscattered radiation.
The polarization is ignored in the following discussion.

On averaging over the initial states of polarization and summing over
the final states of polarization, the probability for Thomson scattering by an
electron of arbitrary energy becomes (in ordinary units)

w(k, k′, p) = (2π)3r20c
4 X̄

γ2ωω′ δ
(
ω(1 − κ · β) − ω′(1 − κ′ · β)

)
,

X̄ = 1
2

{
1 +

[
1 − 1 − κ · κ′

(1 − κ · β)(1 − κ′ · β)

]2}
, (5.6.1)

with k = ωκ, k′ = ω′κ′. The probability (5.6.1) is symmetric in the inter-
change of the scattered and unscattered photon: w(k′, k, p) = w(k, k′, p).

In the case of an electron at rest, the δ-function implies ω = ω′, and
one has X̄(p,k′,k) = 1

2 [1 + (κ · κ′)2]. The rate photons are scattered by an
electron at rest follows by integrating the occupation number, N(k′), of the
unscattered photons over both d3k/(2π)3 and d3k′/(2π)3. The scattering rate
is R = σTn

′
ph, with n′ph =

∫
[d3k′/(2π)3]N(k′) the number density of the

unscattered photons, and with

σT =
8π
3
r20 (5.6.2)



208 5 Classical plasmadynamics

the Thomson cross section. The power radiated in scattered photons by the
electron is P = σTW

′
ph, where W ′

ph is the energy density in the unscattered
photons.

5.6.2 Scattering of an isotropic distribution of photons

For an electron in motion the rate at which photons are scattered may be found
exactly in the case of an isotropic distribution of unscattered photons. In this
case the scattered photons are not isotropic, and this calculation determines
both their angular and their frequency distribution.

On introducing polar angles by writing κ · β = β cos θ, κ′ · β = β cos θ′,
κ · κ′ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′), the azimuthal angles appear only
in the term κ ·κ′, and in all cases of interest one averages over over azimuthal
angles. For the purpose of further analysis, it is convenient to write

x = 1 − β cos θ, x′ = 1 − β cos θ′, y = ω/ω′, (5.6.3)

and the probability (5.6.1) becomes (in ordinary units)

w(k, k′, p) =
(2π)3r20c4

γ2ω3
y2X̄(β, x, x′) δ(x′ − yx), (5.6.4)

where an average over azimuthal angles is performed in replacing X̄(p,k′,k)
in (5.6.1) by

X̄(β, x, x′) = 1 +
[
1/γ2 − x− x′ + γ2xx′

β2γ2xx′

]2

+
[1/γ2 − 2x+ x2] [1/γ2 − 2x′ + x′2]

2β4γ4x2x′2
. (5.6.5)

Let the occupation number of the (assumed isotropic) unscattered photons
be N(ω′), and let their number density and energy density be

n′ph =
∫
d3k′

(2π)3
N(ω′), W ′

ph =
∫
d3k′

(2π)3
ωN(ω′), (5.6.6)

respectively. The rate, R, of production of scattered photons is (in ordinary
units)

R =
πr20cn

′
ph

γ2

∫ ∞

0

dy y

∫ 1+β

1−β

dx

∫ 1+β

1−β

dx′ X̄(β, x, x′) δ(x′ − yx). (5.6.7)

The range of the y-integral is restricted to (1−β)/(1+β) ≤ y ≤ (1+β)(1−β)
by the δ-function and the limits on the ranges of x, x′. The power, P , in
scattered photons is (in ordinary units)
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P =
πr20cW

′
ph

γ2

∫ ∞

0

dy y2
∫ 1+β

1−β

dx

∫ 1+β

1−β

dx′ X̄(β, x, x′) δ(x′ − yx). (5.6.8)

On performing the integrals in the (5.6.7), one finds that the rate that
photons are scattered is independent of the speed of electrons, and is given
by R = σT cn

′
ph. That this must be the case can be understood by noting

that under a Lorentz transformation, both R and n′ph transform as the time-
components of 4-vectors, so that their ratio is an invariant. In the rest frame
of the electron, the ratio R/n′ph is equal to σT irrespective of the angular
distribution of the photons. Hence one must have R/n′ph = σT in an arbitrary
frame in which the speed of the electron is β. Granted this property, one
may use (5.6.7) to define functions fR(β, cos θ) and g(ω/ω′) that characterize
the angular distribution and the energy distribution of the scattered photons.
These are defined by writing (in ordinary units)

R = πr20cn
′
ph

∫ 1

−1

d cos θ fR(β, cos θ) = πr20cn
′
ph

∫ ∞

0

dy g(β, y). (5.6.9)

In the same way, using (5.6.8) one may define corresponding functions that
describe the angular and frequency distribution of the energy radiated (in
ordinary units):

P = πr20cW
′
ph

∫ 1

−1

d cos θ fP (β, cos θ) = πr20cW
′
ph

∫ ∞

0

dy y2g(β, y). (5.6.10)

These functions are identified in terms of X̄(β, x, x′) by

fR(β, cos θ) =
1

2γ2β(1 − β cos θ)2

∫ 1+β

1−β

dx′ x′ X̄(β, 1 − β cos θ, x′), (5.6.11)

fP (β, cos θ) =
1

2γ2β(1 − β cos θ)3

∫ 1+β

1−β

dx′ x′2 X̄(β, 1 − β cos θ, x′), (5.6.12)

g(β, y) =
y2

4γ2β2

∫ 1+β

1−β

dx

∫ 1+β

1−β

dx′ X̄(β, x, x′) δ(x′ − yx). (5.6.13)

The integrals are elementary but lengthy.

5.6.3 Scattering kernel

The function g(β, y) plays an important role in the following discussion as a
scattering kernel. It characterizes the frequency dependence of Thomson scat-
tering in the isotropic case. Explicit evaluation of the integral in (5.6.13) with
(5.6.5) involves integrating over x′ using the δ-function, and the x-integral is
over (1−β)/y ≤ y ≤ 1+β for y < 1 and over 1−β ≤ y ≤ (1+β)/y for y > 1.
There is a symmetry property,
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Fig. 5.6. The functions (a) fR(β, x) and (b) fP (β, x) are plotted as functions of
x = cos θ β = 0.1, for β = 0.1, 0.5, 0.9. Case (a) describes the angular distribution
of the photons, which becomes peaks in a forward cone θ∼<1/γ for γ � 1; the area
under the curve is independent of β. Case (b) describes the angular distribution of
the power radiated, which more strongly, by a factor γ2, concentrated in the forward
cone.

g(β, y) = y3g(β, 1/y), (5.6.14)

that relates the function for y > 1 to the function for y < 1. Its explicit form
is

g(β, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g−(β, y) for

1 − β
1 + β

≤ y ≤ 1,

g+(β, y) for 1 ≤ y ≤ 1 + β
1 − β ,

0 otherwise,

g±(β, y) =
1

16β6γ2

{
− 2y(1 + y)

3 − β2

γ2

[
ln
(

1 + β
1 − β

)
∓ ln y

]
± 1 − y3

γ4

±y(1 − y)(9 − 10β2 + 5β4) + y(1 + y)β(12 − 12β2 + 4β4)
}
. (5.6.15)

The condition (5.6.14) is satisfied by g±(y) = y3g∓(1/y). The function g(β, y)
is plotted in Fig. 5.7 for three values of β. The form for β � 1 is illustrated by
the case β = 0.1, where g(β, y) has a nearly triangular form that is symmetric
about y = 1, with a sharp maximum at y = 1 and vanishing outside the range
1 − 2β < y < 1 + 2β. For the mildly relativistic value β = 0.5, the peak is
above y = 1 and an asymmetry favoring y above the peak becomes evident.
The form for γ � 1 is already apparent for β = 0.9 (γ = 2.3), with a broad
maximum at y ∼ γ2 and vanishing for y > 4γ2.

An analytic approximation to g(y) in the nonrelativistic limit may be found
by expanding in β, assuming that 1 − y = β∆ is of order β, or more simply
by repeating the derivation of g(y) making the nonrelativistic approximation
throughout. The result is
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Fig. 5.7. The function g(β, y) is plotted for (a) β = 0.1, (b) β = 0.5, (c) β = 0.9:
g(β, y) is nonzero only for (1−β)/(1+β) < y < (1+β)/(1−β), and the area under
the curve is independent of β.

g(β, 1 − β∆) =

⎧⎨
⎩

88
15

[
1 − |∆|

(
4 − 2

3
∆2 +

1
10
∆4

)]
, 0 < |∆| ≤ 2,

0, otherwise.
(5.6.16)

In the highly relativistic limit (5.6.15) gives

g+(β, y) = g̃(z+), g−(β, y) = y3g̃(z−), z+ =
y

4γ2
, z− =

1
4γ2y

,

g̃(z) = 2z(1 + z − 2z2) + 4z2 ln z, (5.6.17)

The function g̃(z) has a broad maximum at z = 0.6; Fig. 5.7c illustrates this
form.

5.6.4 Exact results for Thomson scattering

The function g(y) may be interpreted as a scattering kernel. Specific integrals
involving g(y) and powers of y can be evaluated exactly. Three such integrals
are ∫ ∞

0

dy g(y) =
2
3
,

∫ ∞

0

dy y g(y) =
2
9
γ2(3 + β2),

∫ ∞

0

dy y2 g(y) =
2
45
γ4(15 + 20β2 + 7β4), (5.6.18)

with γ = (1 − β2)−1/2.
The mean frequency, 〈ω〉, of the scattered photons due to scattering of

initial photons with frequency ω0 by electrons with speed β is determined by
the ratio of the second integral to the first in (5.6.18). This gives

〈ω〉
ω0

= γ2(1 + β2/3) =
{

1 + 4β2/3 for β2 � 1,
4γ2/3 for γ2 � 1.

(5.6.19)

In the same way the mean square frequency change, 〈ω2〉/ω2
0 is determined

by the ratio of the third integral to the first in (5.6.18), and this may be used
to determine the variance, [〈ω2〉 − 〈ω〉2]/ω2

0. One finds
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〈ω2〉 − 〈ω〉2
ω2

0

=
2γ4β2

3
(1 + 8β2/15) =

{
2β2/3 for β2 � 1,
46γ4/45 for γ2 � 1.

(5.6.20)

Thus, for nonrelativistic electrons, there is a small average increase in the
frequency of the photons, with only a narrow spread in frequency (for fixed
initial frequency, ω0). In the highly relativistic case there is a large boost in
frequency, with a broad spread in the final frequency. The highly relativistic
case corresponds to inverse Compton scattering.

5.6.5 Kinetic equation for isotropic particles and photons

In the case of isotropic distributions of unscattered photons and of scat-
tering particles, one can perform the angular integrals in the kinetic equa-
tions (5.5.11)–(5.5.13) explicitly. It is convenient to introduce the parameter
y = ω/ω′, which is the ratio of the frequency of the scattered photon to the
unscattered photon. The kinetic equation for an isotropic distribution of radi-
ation scattered by an isotropic distribution of particles is (in ordinary units)

dN(ω)
dt

= 4πr20c
∫ ∞

0

d|p| |p|2
(2π)3

∫ ∞

0

dy g(y)
{[
N(ω/y) −N(ω)

]
f(|p|)

+N(ω/y)N(ω)
y − 1
y

ω

β

∂f(|p|)
∂|p|

}
, (5.6.21)

df(|p|)
dt

=
1

|p|2
∂

∂|p|

{
|p|24πr20c

∫ ∞

0

dωω2

(2πc)3

∫ ∞

0

dy g(y)
y − 1
y

ω

β

×
[[
N(ω/y)−N(ω)

]
f(|p|) +N(ω/y)N(ω)

y − 1
y

ω

β

∂f(|p|)
∂|p|

]}
,

(5.6.22)

with |p| = mecγβ. Equations (5.6.21) and (5.6.22) together imply that the
sum of the energies in the photons and the particles is conserved. Equation
(5.6.21) also implies that the number of photons is conserved. The proof that
(5.6.21) implies conservation of photons follows by multiplying by ω2 and
integrating over ω, using the identity (5.6.14) and the first of the integrals
(5.6.18).

5.6.6 Kompaneets equation

Compton scattering in a nondegenerate, nonrelativistic thermal electron gas is
described by the Kompaneets equation. An intermediate step in the derivation
of the Kompaneets equation is to evaluate the integrals in (5.6.21) for nonrel-
ativistic electrons. The scattering kernel, described by g(y), may be evaluated
using the nonrelativistic approximation (5.6.16). It is simpler up to make a
Taylor series expansion in 1 − y in (5.6.21), and to evaluate the integral over
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y using (5.6.18) with the approximation β2 � 1. With |p| = mecβ, the final
term, involving ∂f(|p|)/∂|p|, is partially integrated to give (in ordinary units)

dN(ω)
dt

=
8π
9
r20cneω

(
4 + ω

d

dω

){
〈β2〉dN(ω)

dω
+

3
2
h̄N2(ω)
mec2

}
, (5.6.23)

where the angular brackets denote the average over the distribution function.
The two terms in the curly brackets arise from spontaneous scattering and
induced scattering, respectively.

Equation (5.6.23) neglects the quantum recoil, which is of the same order
as the terms retained. The quantum recoil may be included using an argu-
ment analogous to that leading to the inclusion of the recoil term in the kinetic
equation (5.2.19) that describe emission and absorption. In the case of scat-
tering, inclusion of the recoil term in (5.6.21) involves the replacement (in
ordinary units)

[
N(yω) −N(ω)

]
f(|p|) →

[
N(yω) −N(ω)

]{
f(|p|) + 1

2

h̄ω

βc

∂f(|p|)
∂|p|

}
.

The additional term is of the same form as the term that describes induced
scattering. Repeating the argument leading to (5.6.23), the generalization to
include the quantum recoil in spontaneous scattering gives (in ordinary units)

dN(ω)
dt

=
8π
9
r20neω

(
4 + ω

d

dω

){
〈β2〉dN(ω)

dω
+

3
2
h̄N(ω)[1 +N(ω)]

mec2

}
.

(5.6.24)
For a thermal distribution one has 〈β2〉 = 3T/2me, where T is the tem-

perature, and (5.6.24) gives the Kompaneets equation (in ordinary units)

dN(ω)
dt

=
σTneTω

mec

(
4 + ω

d

dω

){
dN(ω)
dω

+
h̄N(ω)[1 +N(ω)]

T

}
, (5.6.25)

where σT = 8πr20/3 is the Thomson cross section.
The term in (5.6.25) involving dN(ω)/dω describes the Doppler broadening

effect of spontaneous scattering. Doppler broadening tends to cause a blue
shift: the frequency of the photon typically increases due to this effect because
head-on collisions, which increase the energy of the photon, and slightly more
frequent than overtaking collisions, which decrease the energy of the photon.
The term in (5.6.25) that is linear in N(ω) describes the effect of the quantum
recoil in spontaneous scattering. The recoil tends to cause a red shift. This
may be understood by considering scattering by an electron initially at rest.
As a result of the recoil, the electron has a non-zero momentum and energy
after the scattering, and its gain in energy must be at the expense of the energy
of the photon, which decreases due to this effect. The term quadratic in N(ω)
describes induced scattering. This term is independent of the temperature
and applies to any (isotropic) nonthermal distribution of electrons. This term
alone can be written in the form (in ordinary units)
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dN(ω)
dt

=
σTneh̄

mec

1
ω2

d

dω
[ω2N(ω)]2, (5.6.26)

An implicit solution of (5.6.26) for a given initial spectrum of photons is [1]
(in ordinary units)

ω = F
(
ω2N(ω)

)
− 2σTneh̄

mec
ω2N(ω)t, (5.6.27)

where the function F is determined by the spectrum at t = 0. Induced scat-
tering transfers photons from higher to lower frequency, and has its maximum
effect where ω2N(ω) is a maximum as a function of frequency. Induced scat-
tering pumps photons across this peak, eroding it away, so that the peak tends
to decrease and move to higher frequencies.

The steady-state solution of the Kompaneets equation (5.6.25) corre-
sponds to the vanishing of the quantity inside the curly brackets, and this
implies N(ω) = [exp(−h̄ω/T ) − 1]−1, which is the Planck distribution.
If the quantum recoil is neglected, the corresponding solution of (5.6.24),
with 〈β2〉 = 3T/2mec

2, is the Rayleigh-Jeans distribution N(ω) = T/ω
(N(ω) = T/h̄ω in ordinary units), which is the classical limit, ω/T � 1,
of the Planck distribution. The quantum recoil term is important for photons
with energy, h̄ω, of order or greater than the thermal energy, T .

5.6.7 Inverse Compton scattering

Inverse Compton scattering may be defined as spontaneous Thomson scatter-
ing by highly relativistic electrons. A characteristic property of inverse Comp-
ton emission follows from (5.6.19): the average frequency change of photons
scattered by isotropic relativistic electrons involves a boost by a factor of or-
der γ2. This is reflected in the properties of g(y), which for highly relativistic
electrons has the approximate form (5.6.17), that is, by g̃(z), with z = y/4γ2.
In (5.6.21) the argument of N(ω/y) may be rewritten as ω′ = ω/4γ2z. With
only this term retained, (5.6.21) gives (in ordinary units)

dN(ω)
dt

= 4r20c
∫
dγ γ2Ne(γ)

∫
dz g̃(z)N(ω/4γ2z),

∫
dγNe(γ) = 4π

∫
d|p| |p|2
(2π)3

f(|p|), (5.6.28)

where the distribution of particles is described by their number density, Ne(γ),
per unit range of γ.

For a power-law distribution, Ne(γ) ∝ γ−a say, the frequency dependence
(5.6.28) implies dN(ω)/dt ∝ ω−(a−5)/2. The intensity, I(ω), is proportional to
ω3N(ω). It follows that the intensity of the inverse Compton emission from
a power-law distribution of electrons is of the form I(ω) ∝ ω−(a−1)/2, which
result is well known. The shape of the spectrum of inverse Compton radiation
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is insensitive to the shape of the spectrum of the unscattered photons: in a
semi-quantitative description, the target photons may be described in terms
of their number density, n′ph, and their mean frequency, 〈ω′〉, such that the
inverse Compton photon spectrum is boosted by a factor ∼ γ2 to ω ∼ γ2〈ω′〉.

5.6.8 Induced scattering by relativistic electrons

Induced Compton scattering by relativistic electrons may be regarded for-
mally as the absorptive process corresponding to inverse Compton scattering.
For highly relativistic electrons, the term in (5.6.21) that describes induced
scattering leads to an exponential transfer of photons at the rate (in ordinary
units)

1
N(ω)

dN(ω)
dt

= 4r20c
h̄ω

mec2

∫
dγ γ2 d

dγ

(
Ne(γ)
γ2

)∫
dz g̃(z)N

(
ω

4γ2z

)
,

(5.6.29)
where the notation introduced in (5.6.28) is used, and where only the contri-
bution from y � 1 is retained. Equation (5.6.29) implies a damping of the
high-frequency photons, due to their (induced) scattering to lower frequencies.
The more general equation (5.6.21) includes the effect on the lower frequency
photon due to induced scattering from higher frequencies. This transition oc-
curs at y = 1, where the factor y − 1 in the induced term in (5.6.21) changes
sign. To include this effect in (5.6.29) one needs to add another term that
comes from the regime y � 1 in (5.6.21), where the contribution is nega-
tive. (An explicit form for this term follows using g̃(z−) from (5.6.17).) This
additional term is needed to ensure that the number of photons is conserved.

Qualitatively, induced Compton scattering can have the opposite effect to
inverse Compton emission, transferring photons from ω ∼ γ2ω′ to ω′, rather
than from ω′ to ω ∼ γ2ω′. Consider a simple model in which electrons with a
number density ne and Lorentz factor γ � 1 scatter photons with frequency
ω′ and occupation number N ′ into photons with frequency ω ≈ γ2ω′ and
occupation number N . Then (5.6.28) and (5.6.29) imply that the occupation
number of the scattered photons changes at a rate (in ordinary units)

dN

dt
≈ r20cneN

′ − r
2
0neh̄ω

γmec
N ′N.

In a steady state, dN/dt = 0, this implies N ≈ γmec
2/h̄ω, which corresponds

to a brightness temperature, h̄ωN ≈ γmec
2 approximately equal to the energy

of the particles. Thus, inverse Compton emission is analogous to synchrotron
radiation in that when self absorption is important, the intensity I(ω) ∝ ω3N
has a peak, with N ≈ γmec

2/h̄ω below the peak implying I(ω) ∝ ω5/2, where
γ ∝ ω1/2 is used.

The largest effect of induced scattering by relativistic particles is where the
rate of transfer (5.6.29) is largest, and this may be identified by considering
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the frequency dependence of the right hand side of (5.6.29). For Ne(γ) ∝ γ−a,
the right hand side of (5.6.29) scales with frequency ∝ ω−(a−2)/2, implying
that the largest effect is at the lowest frequency, which is due to scattering
by the electrons with the lowest γ. The main effect of induced scattering by
relativistic electrons is more analogous to induced scattering by nonrelativistic
electrons than to an absorptive counterpart to inverse Compton scattering.
Specifically, it tends to transfer photons from higher to lower frequency across
a peak in the spectrum, such as that due to synchrotron self absorption. The
typical change in frequency in such induced scattering is by a factor of order
γ2
min, where γmin is the low-energy cutoff of the power-law particle spectrum.
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5.7 Wave-wave interactions

The lowest order wave-wave interaction in a plasma is a three-wave interaction
involving either the coalescence of two waves into one, or the decay of one
wave into two. Four-wave interactions include wave-wave scattering as well as
coalescence of three waves into one and decay of one wave into three.

5.7.1 Three-wave interactions

The current for a three-wave interaction is included in the quadratic current
in the weak turbulence expansion (1.4.4),

Jµ(k) =
∫
dλ(2)Π(2)µνρ(−k, k1, k2)Aν(k1)Aρ(k2). (5.7.1)

Suppose that the specific three wave process of interest is P +Q → M , that
is the coalescence of a wave in the mode P with a wave in the mode Q to
form a wave in the mode M . The source term for this coalescence process is
obtained by writing

Aµ(k) = Aµ
P (k) +Aµ

Q(k) + · · ·

and keeping only the cross terms in (5.7.1). The two cross terms give identical
contributions in view of the symmetry property (1.4.26). Thus the relevant
current is

Jµ
PQ(k) = 2

∫
dλ(2)Π(2)µνρ(−k, k1, k2)APν(k1)AQρ(k2). (5.7.2)

In order to treat the generation of the wave in the mode M from the
coalescence of the waves in the modes P and Q, the current (5.7.2) is inserted
into the expression (5.1.11) for the probability of emission. The outer product
of the 4-current (5.7.2) with itself needs to be evaluated. This is of the form〈∫

dλ(2)Π(2)µ
νρ(−k, k1, k2)Aν

P (k1)A
ρ
Q(k2)

×
∫
dλ

′(2)Π(2)α
βγ(−k′, k′1, k′2)A

β
P (k′1)A

γ
Q(k′2)

〉
,

where the angular brackets denote averages over the phases of the waves in
the two modes P and Q.

5.7.2 Probability for a three-wave interaction

The diagram for the resulting three-wave interaction is illustrated in Fig. 5.8.
The corresponding probability is derived as follows. After averaging over the
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Fig. 5.8. The diagram for a three-wave process involves only a single nonlinear
interaction.

phases, (5.1.9) is evaluated explicitly and written in a form that defines the
probability wMPQ(−k, k′, k′′). This form is

Qµ
M (k) =

∫
d3k′

(2π)3
d3k′′

(2π)3
kµ

M wMPQ(−k, k′, k′′)NP (k′)NQ(k′′). (5.7.3)

The probability is defined as the rate per unit time that wave quanta in modes
P and Q in ranges d3k′/(2π)3 and d3k′′/(2π)3, respectively, coalesce into a
wave in the mode M in the range d3k/(2π)3. The probability is identified as

wMPQ(−k, k′, k′′) =
4
ε30

RM (k)RP (k′)RQ(k′′)
|ωM (k)ωP (k′)ωQ(k′′)|

×|Π(2)
MPQ(−k, k′, k′′)|2 (2π)4δ4(kM − k′P − k′′Q), (5.7.4)

Π
(2)
MPQ(−k, k′, k′′) = e∗µ

M (k)eνP (k′)eρQ(k′′)Π(2)
µνρ(kM , k

′
P , k

′′
Q). (5.7.5)

The sign convention for the arguments k, k′, etc., in the probability corre-
sponds to a plus sign for an incoming wave and a minus sign for an outgoing
wave. Conservation of 4-momentum for the waves corresponds to the 4-vector
sum of the arguments being zero.

The probability satisfies the following crossing symmetries:

wMPQ(−k, k′, k′′) = wMQP (−k, k′′, k′) = wPMQ(−k′, k, k′′). (5.7.6)

These symmetries follow from the crossing symmetries (1.4.26) satisfied by
the nonlinear response tensor. They correspond to the P,Q symmetry for the
three-wave processes M ↔ P + Q, and to the crossed process P ↔ M +
Q, respectively. Further symmetries are implied by those written, including
wQMP (−k′′, k, k′) for the process Q↔M + P .

The probability (5.7.4) is based on the assumption that the wave modes
P and Q are different. If this is not the case, the probability needs to be
corrected by a factor of 2. Specifically, if the modes P = Q are the same, the
probability wMPP is half the value obtained by setting Q = P in (5.7.4).
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5.7.3 Kinetic equations for three-wave processes

The kinetic equations for the three waves involved in a coalescence P+Q→M
and the inverse decay processM → P+Q are derived by noting that the total
rate of the coalescence is proportional to

wMPQ(−k, k′, k′′)
[
1 +NP (k′)

][
1 +NQ(k′′)

]
NM (k)

d3k

(2π)3
d3k′

(2π)3
d3k′′

(2π)3
,

and that the rate of the decay is proportional to

wMPQ(−k, k′, k′′)NP (k′)NQ(k′′)
[
1 +NM (k)

] d3k
(2π)3

d3k′

(2π)3
d3k′′

(2π)3
.

Each coalescence increases NM (k) by unity and decreases NP (k′) and NQ(k′′)
by unity, and each decay has the opposite effect. The kinetic equations follow
by summing these contributions with opposite signs.

The kinetic equations for the waves in a three-wave interaction are

DNM (k)
Dt

=
∫
d3k′

(2π)3
d3k′′

(2π)3
wMPQ(−k, k′, k′′)

{
NM (k)

+NP (k)NQ(k′′) −NM (k)
[
NP (k′) +NQ(k′′)

]}
, (5.7.7)

DNP (k′)
Dt

= −
∫
d3k

(2π)3
d3k′′

(2π)3
wMPQ(−k, k′, k′′)

{
NM (k)

+NP (k′)NQ(k′′) −NM (k)
[
NP (k′) +NQ(k′′)

]}
, (5.7.8)

DNQ(k′′)
Dt

= −
∫
d3k

(2π)3
d3k′

(2π)3
wMPQ(−k, k′, k′′)

{
NM (k)

+NP (k′)NQ(k′′) −NM (k)
[
NP (k′) +NQ(k′′)

]}
. (5.7.9)

Together the set of equations (5.7.7)–(5.7.9) ensures that the sum of the 4-
momenta in the waves is conserved.

The term involving NM (k) alone in each of (5.7.7)–(5.7.9) is intrinsically
quantum mechanical. In a quantum treatment, this term describes photon
splitting in QED. In classical theory, the terms involving NM (k) alone should
be omitted from the right hand sides of (5.7.7)–(5.7.9).

5.7.4 Current for four-wave interactions

The probability for the four-wave interaction involving coalescence of three
waves into one is defined and evaluated in an analogous way to that for the
three-wave interaction involving coalescence of two waves into one. There are
two contributions to the relevant current.

One contribution to the current for a four-wave interaction is identified by
considering the coalescence process M1 +M2 +M3 →M , which corresponds
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Fig. 5.9. The diagrams for a four-wave process include (a) one involving the cu-
bic nonlinear response, and (b), (c), (d) three involving two quadratic nonlinear
interactions and an associated virtual wave.

to the coalescence of waves in modes M1, M2, M3 into a wave in mode M .
The relevant term in the weak-turbulence expansion (1.4.4) is the cubic term,

Jµ(k) =
∫
dλ(3)Π(3)µνρσ(−k, k1, k2, k3)Aν(k1)Aρ(k2)Aσ(k3), (5.7.10)

which becomes a source term for the four-wave interaction when one writes

Aµ(k) = Aµ
M1

(k) +Aµ
M2

(k) +Aµ
M3

(k) + · · ·

and keeps only the relevant cross terms. When M1, M2, M3 are all different,
there are six such cross terms and they all contribute equally in view of the
symmetry property (1.4.26). Thus the contribution to the current for the
three-wave coalescence from the cubic response is

J
(3)µ
M1M2M3

(k) = 6
∫
dλ(3)Π(3)µ

νρσ(−k, k1, k2, k3)Aν
M1

(k1)A
ρ
M2

(k2)Aσ
M3

(k3).

(5.7.11)
The other contribution to the current arises from the quadratic response

operating twice. There are three independent such terms, as illustrated in
Fig. 5.9. For example, the quadratic response due to Aµ

M1
(k), Aµ

M2
(k) gives

a beat field and this can combine with Aµ
M3

(k), again due to the quadratic
response, to give an effective cubic response term. The current corresponding
to the beat of Aµ

M1
(k), Aµ

M2
(k) is inserted as the extraneous current in the

solution (5.1.2) of the inhomogeneous wave equation (5.1.1). This gives
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Aµ
M1M2

(k) = −2Dµ
α(k)

∫
dλ(2)Π(2)α

νρ(−k, k1, k2)Aν
M1

(k1)A
ρ
M2

(k2).

(5.7.12)
The resulting contribution to the current for the four-wave process is obtained
by including Aµ

M1
, Aµ

M2
, Aµ

M3
in the total field in (5.7.1) and retaining the cross

terms between them.

5.7.5 Effective cubic response

The combination of the direct cubic response and the quadratic response op-
erating twice always occurs when considering an actual cubic response. It is
convenient to define an effective cubic response that combines these contribu-
tions. The effective cubic response tensor is identified as

Π
(3)µνρσ
eff (k0, k1, k2, k3) = Π(3)µνρσ(k0, k1, k2, k3)

−2Π(2)µνθ(k0, k1, k2 + k3)Dθη(k2 + k3)Π(2)ηρσ(−k2 − k3, k2, k3)
−2Π(2)µρθ(k0, k2, k1 + k3)Dθη(k1 + k3)Π(2)ηνσ(−k1 − k3, k1, k3)
−2Π(2)µσθ(k0, k3, k1 + k2)Dθη(k1 + k2)Π(2)ηνρ(−k1 − k2, k1, k2)

]
.

(5.7.13)

The tensor Π(3)µνρσ
eff satisfies the same symmetry and other properties as the

intrinsic cubic response tensor Π(3)µνρσ .
The total source current for the four-wave coalescence becomes

J
(3)µ
M1M2M3

(k) = 6
∫
dλ(3)Π

(3)µ
eff νρσ(−k, k1, k2, k3)Aν

M1
(k1)A

ρ
M2

(k2)Aσ
M3

(k3).

(5.7.14)

This current is inserted in (5.1.9) to treat the four-wave process.

5.7.6 Four-wave interactions

The probability for the four-wave interaction is derived by proceeding as in
the treatment of three-wave interactions. In place of (5.7.3) one has

Qµ
M (k) =

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
kµ

M

×wMM1M2M3(−k, k1, k2, k3)NM1(k1)NM2(k2)NM3(k3). (5.7.15)

The explicit expression for the probability is

wMM1M2M3(−k, k1, k2, k3) =
36
ε40

RM (k)RM1(k1)RM2(k2)RM3(k3)
ωM (k)ωM1(k1)ωM2(k2)ωM3(k3)

×|ΠMM1M2M3(−k, k1, k2, k3)|2 (2π)4δ4(kM − k1M1 − k2M2 − k3M3),

ΠMM1M2M3(−k, k1, k2, k3) = e∗µ
M (k)eνM1

(k1)e
ρ
M2

(k2)eσM3
(k3)

×Π(3)µ
eff νρσ(kM , k1M1 , k2M2 , k3M3). (5.7.16)
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The probability (5.7.16) applies when the three modes M1, M2, M3 are all
different. When two of the modes are the same and different from the third,
the factor 36 needs to be replaced by 8, and when all three modes are the
same, the factor 36 is replaced by 6.

The probability (5.7.16) is derived for the three-wave coalescence process
M1+M2+M3 →M . This probability satisfies crossing symmetries that relate
it to the probability for other three-wave coalescence, such asM+M2+M3 ↔
M1. Another type of crossing symmetry relates the probability (5.7.16) for
decay of one wave into three to the probability for a wave-wave scattering
processes such as M +M1 ↔M2 +M3. These crossing symmetries include

wMM1M2M3(−k, k1, k2, k3) = wMM1M3M2(−k, k1, k3, k2)
= wMM2M1M3(−k, k2, k1, k3)
= wM1MM2M3(−k1, k, k2, k3)
= w(ww)

MM1M2M3
(−k,−k1, k2, k3), (5.7.17)

where the superscript (ww) denotes the wave-wave scattering process.

5.7.7 Kinetic equations for three-wave coalescence

The kinetic equations for three waves coalescing into one and the decay of one
wave into three, specifically the processes M1 +M2 +M3 ↔M , are

DNM (k)
Dt

=
∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
wMM1M2M3(−k, k1, k2, k3)

×
{
−NM (k) −NM (k)

[
NM1(k1) +NM2(k2) +NM3(k3)

]
+NM1(k1)NM2(k2)NM3(k3) −NM (k)

[
NM1(k1)NM2(k2)

+NM1(k1)NM3(k3) +NM2(k2)NM3(k3)
]}
, (5.7.18)

DNM1(k1)
Dt

= −
∫
d3k

(2π)3
d3k2

(2π)3
d3k3

(2π)3
wMM1M2M3(−k, k1, k2, k3)

×
{
−NM (k) −NM (k)

[
NM1(k1) +NM2(k2) +NM3(k3)

]
+NM1(k1)NM2(k2)NM3(k3) −NM (k)

[
NM1(k1)NM2(k2)

+NM1(k1)NM3(k3) +NM2(k2)NM3(k3)
]}
, (5.7.19)

plus two other equations obtained from (5.7.19) by interchanging the sub-
scripts 1 ↔ 2 and 1 ↔ 3, respectively.

As in the case of three-wave interactions, the kinetic equation include terms
that are intrinsically quantum mechanical and that should not be included in
a semiclassical theory. Only the terms cubic in the occupation numbers on
the right hand sides of (5.7.18), (5.7.19) are purely classical.
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5.7.8 Kinetic equations for wave-wave scattering

The kinetic equations for the wave-wave scattering processes M1 + M2 ↔
M3 +M4 are

DNM1(k1)
Dt

=
∫
d3k2

(2π)3
d3k3

(2π)3
d3k4

(2π)3
w

(ww)
M1M2M3M4

(k1, k2, k3, k4)

×
{
NM3(k3)NM4(k4) −NM1(k1)NM2(k2)

+NM3(k3)NM4(k4)
[
NM1(k1) +NM2(k2)

]
−NM1(k1)NM2(k2)

[
NM3(k3) +NM4(k4)

]}
, (5.7.20)

DNM3(k3)
Dt

= −
∫
d3k1

(2π)3
d3k2

(2π)3
d3k4

(2π)3
w

(ww)
M1M2M3M4

(k1, k2, k3, k4)

×
{
NM3(k3)NM4(k4) −NM1(k1)NM2(k2)

+NM3(k3)NM4(k4)
[
NM1(k1) +NM2(k2)

]
−NM1(k1)NM2(k2)

[
NM3(k3) +NM4(k4)

]}
. (5.7.21)

There are two other equations, one obtained from (5.7.20) by the interchange
1 ↔ 2 and another obtained from (5.7.21) by the interchange 3 ↔ 4. As
in (5.7.18), (5.7.19), only the terms cubic in the occupation numbers on the
right hand sides of (5.7.20), (5.7.21) are purely classical. The factor 36 in
the probability (5.7.16) needs to be replaced when considering wave-wave
scattering. For example, for wave-wave scattering, M +M ′ ↔M +M ′, with
M �= M ′, the factor 36 is replaced by 16, and for M +M ↔ M ′ +M ′ the
factor 36 is replaced by 4.

It is interesting that there is no standard classical theory that allows one
to treat wave-wave scattering directly as a scattering process. The situation is
similar to that for particle-particle scattering, as discussed in §5.4, where an
indirect classical, collective-medium approach is used to derive the scattering
probability. In treating wave-wave scattering here, the basic calculation is for a
coalescence of three waves into one wave, which allows one to use the emission
formula (5.1.11). To treat wave-wave scattering directly (rather than relating
it to the three-wave coalescence) requires an analog of the emission formula
in which two waves are emitted simultaneously. Although there is a standard
procedure in QED for treating such multiple emission, there is no standard
classical theory that allows one to do so directly.

5.7.9 Phase-coherent interactions

The random phase approximation applies only when the phase of the wave is
irrelevant. For narrow-band waves, the phase-coherence time is of order the
inverse of the bandwidth. It is possible for waves to grow due to nonlinear
processes (e.g., three-wave interaction or induced scattering) with a growth
rate that exceeds the relevant bandwidth. Then the relative phases of the
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waves are important, and the theory developed above is inappropriate. For
waves with sufficiently narrow bandwidths the phases need to be taken into
account explicitly. An alternative treatment of nonlinear interactions which
takes account of the relative phases is as follows.

Consider the inhomogeneous wave equation (5.1.1) with the extraneous
current identified as the current involved in a nonlinear interaction. Let this
current be denoted JNL(k). The solution of the inhomogeneous wave equa-
tion is given by (5.1.2), viz., Aµ(k) = −Dµν(k)JNL

ν (k). When the evolution
of waves in a modeM is of interest, one retains only the zero at ω = ωM (k) of
λ(k) in the denominator of the propagator (5.1.3). The intrinsic damping of
the waves is included by identifying this zero as being at ω = ωM (k)− 1

2 iγM (k).
The numerator in (5.1.3) is rewritten in terms of RM (k), eµM (k) using (2.3.10)
and (2.3.11). In this way, one approximates the radiation field in the mode
M by

Aµ
M (k) ≈ − 1

ε0

RM (k)
ωM (k)

eµM (k)e∗ν
M (k)JNL

ν (kM )
ω − ωM (k) + 1

2 iγM (k)
. (5.7.22)

The result (5.7.22) differs from the positive-frequency part implied by (5.1.2)
with (5.1.7) in that the δ-function profile at ω = ωM (k) is replaced by the
Lorentzian profile in (5.7.22).

A model for the amplitude, aM (x), for a quasi-monochromatic wave field
involves assuming that variations on a fast-short scale is represented by a
phase factor exp(−ikMx), and with the amplitude, aM (x) exp[iφM (x)], vary-
ing slowly within the envelope of the rapid oscillations. The specific form
assumed is

Aµ
M (x) = eµMaM (x)eiφM (x)e−ikM x + e∗µ

M aM (x)e−iφM (x)eikM x. (5.7.23)

An equation that describes the secular evolution (on the slow-long scale) of
the wave amplitude is obtained from (5.7.22) by multiplying by the factor
ω − ωM (k) + 1

2 iγM (k), and inverting the Fourier transform on the left hand
side retaining only the positive-frequency term in (5.7.23). This gives(

d

dt
+ 1

2γM (k)
)[
aM (x)eiφM (x)

]
=
i

ε0

∫
d4k

(2π)4
e−i(k−kM )x RM (k)

ωM (k)
e∗ν

M (k)JNL
ν (k), (5.7.24)

with d/dt = ∂/∂t + vgM · (∂/∂x). Equation (5.7.24) applies to any linear
or nonlinear damping processes. To apply (5.7.24) to a specific process, one
identifies the appropriate current, uses Fourier transforms of counterparts of
(5.7.23) to rewrite any wave amplitudes on the right hand side, and carries
out the integral.

To treat the three-wave interaction P +Q↔M using (5.7.24) the current
is identified as that given by (5.7.2). On retaining only the positive-frequency
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terms in the Fourier transforms of the counterparts of (5.7.23) for the modes
P and Q, one obtains(

d

dt
+ 1

2γM

)[
aM (x)eiφM (x)

]
=

2i
ε0

RM (k)
ωM (k)

Π
(2)
MPQ

×aP (x)aQ(x)ei[φP (x)+φQ(x)]ei(kM−kP −kQ)x, (5.7.25)

with Π(2)
MPQ = Π(2)

MPQ(−k, k′, k′′) given by (5.7.5). Similar equations describe
the evolution of the amplitudes of the waves in modes P and Q.

It is convenient to rewrite the set of three equations for the evolution of
the three (complex) wave amplitudes in terms of equations for the wave action
density, AM (x), plus an equation for the evolution of a relative phase. The
wave action density is given by integrating the wave action (or occupation
number) NM (k) over d3k/(2π)3, which for a quasi-monochromatic distribu-
tion is equivalent to dividing by the normalization volume, V . Using (2.4.10)
one identifies

AM (x) = ε0ωM |aM (x)|2
/
RM . (5.7.26)

The phases appear only in terms of the relative phase

Φ(x) = φM (x) − φP (x) − φQ(x) − (kM − kP − kQ)x. (5.7.27)

The resulting set of equations is(
d

dt
+ γM

)
AM (x) = 2CMPQA1/2

M (x)A1/2
P (x)A1/2

Q (x) sinΦ(x), (5.7.28)

(
d

dt
+ γP

)
AP (x) = 2CMPQA1/2

M (x)A1/2
P (x)A1/2

Q (x) sinΦ(x), (5.7.29)

(
d

dt
+ γQ

)
AQ(x) = 2CMPQA1/2

M (x)A1/2
P (x)A1/2

Q (x) sinΦ(x), (5.7.30)

dΦ(x)
dt

= −(ωM − ωP − ωQ) + 2CMPQA1/2
M (x)A1/2

P (x)A1/2
Q (x)

×
(

1
AM (x)

− 1
AP (x)

− 1
AQ(x)

)
cosΦ(x), (5.7.31)

with

CMPQ = 2
(

1
ε30

RMRQRP

ωMωQωP

)1/2

ΠMPQ. (5.7.32)

The set of equations (5.7.28)–(5.7.31) is a conventional starting point for
detailed investigations of three-wave interactions [2]. An important qualitative
feature of the equations is that a conservation law for the wave action applies
irrespective of the coherence properties of the waves. Specifically, if damping
is negligible, the equations imply

AM (x) + AP (x) = constant, AM (x) + AQ(x) = constant,

AP (x) −AQ(x) = constant. (5.7.33)
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5.8 Nonlinear wave equations

Nonlinear phenomena associated with waves include not only coalescence,
decay and wave-wave scattering processes, but also nonlinear effects on the
properties of the waves themselves, including frequency shifts, self focusing,
Langmuir collapse and degenerate four-wave mixing. Such nonlinear phenom-
ena include both the effect of one mode on another mode, and the effect of
one mode on itself.

5.8.1 Nonlinear correction to the linear response

Consider the weak-turbulence expansion (1.4.4), with the cubic response ten-
sor replaced by the effective cubic response tensor (5.5.13). The field Aµ(k)
is separated into a part due to waves in the mode P plus a test field, and is
averaged over the phase of the waves in the mode P . The contribution from
the quadratic response averages to zero and the only remaining terms up to
cubic order are

Jµ(k) =
[
Πµν(k) +ΠNLµν(k)

]
Aν(k), (5.8.1)

with the nonlinear correction to the response tensor identified as

ΠNLµν(k) = 3
∫
dλ(3)Π

(3)µν
eff ρσ(−k, k1, k2, k3)〈Aρ

P (k2)Aσ
P (k3)〉, (5.8.2)

where the angular brackets denote the average over phase. The phase average
is performed explicitly using (5.5.6), so that (5.8.2) reduces to

ΠNLµν(k) =
6
ε0

∫
d3k′

(2π)4
RP (k′)
ωP (k′)

NP (k′)

×eρP (k′)e∗σ
P (k′)Π(3)µν

eff ρσ(−k, k, k′,−k′), (5.8.3)

where the positive and negative frequencies in (5.5.6) contribute equally.

5.8.2 Nonlinear effects involving two different wave modes

To treat the nonlinear effect of waves in one mode on waves in another mode
one incorporates the nonlinear correction (5.8.3) to Πµν(k) into the wave
equation. The wave equation becomes

ΛNLµν(k)Aν(k) = 0, ΛNLµν(k) = Λµν(k) + µ0Π
NLµν(k), (5.8.4)

where Λµν(k) is given by (2.1.2).
The dispersion equation modified by the presence of waves in the mode P

is written in the form λNL(k) = 0, with λNL(k) constructed from ΛNLµν(k)
in the same way as λ(k) is constructed from Λµν(k) in §2.2. The nonlinear
wave equation leads both to modifications of the wave modes that exist in the
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absence of the nonlinearity, and also to the existence of intrinsically new wave
modes. The nonlinear modifications to existing wave modes is treated using a
perturbation approach. Of particular interest is the derivation of a nonlinear
frequency shift ∆ωM for waves in any mode M due to the presence of the
waves in the mode P . One has

∆ωM = − 1
ε0

RM (k)
ωM (k)

ΠNL
M (kM ), ΠNL

M (kM ) = e∗µ
M (k)eνM (k)ΠNL

µν (kM ).

(5.8.5)
The real part of∆ωM describes a nonlinear frequency shift, and the imaginary
part of ∆ωM describes a nonlinear absorption.

5.8.3 Nonlinear damping processes

The nonlinear absorption coefficient is identified by analogy with the linear
absorption coefficient (2.4.14):

γNL
M (k) = 2µ0

RM (k)
ωM

ImΠNL
M (kM ),

ImΠNL
M (kM ) = e∗µ

M (k)eνM (k)ΠA,NL
µν (kM ), (5.8.6)

where ΠA,NL
µν (k) is the antihermitian part of ΠNL

µν (k). The nonlinear absorp-
tion coefficient (5.8.6) allows one to treat the nonlinear absorption processes
corresponding to induced scattering and to three-wave interactions.

The nonlinear damping of waves in the mode M due to the three-wave
interaction P +Q↔ M is contained in (5.7.7), specifically (minus) the coef-
ficient of the term proportional to NM (k) on the right hand side. This gives

γNL
M (k) =

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
wMPQ(−k, k′, k′′)

[
NP (k′) +NQ(k′′)

]
. (5.8.7)

The term in (5.8.7) involving NP (k′) is reproduced from (5.8.6) as follows.
The relevant imaginary part arises from a pole in the propagator Dθη(k− k′)
in the expression (5.7.13) for the effective cubic nonlinear response tensor. In
particular there is a zero of λ(k − k′) at k− k′ = k′′Q, which with k = kM and
k′ = k′P in (5.8.3) reduces to the three-wave beat condition kM = k′P + k′′Q
in the δ-function in (5.7.4). One may write the relevant contribution to the
antihermitian part of the propagator in the form

DAµν(k − k′) = −µ0GαG
′
βλ

µανβ(k − k′)
G(k − k′) G′(k − k′) Im

1
λ(k − k′) ,

Im
1

λ(k′′)
= −

πδ
(
ω′′ − ωQ(k′′)

)
∂λ(k′′)/∂ω′′ . (5.8.8)

The remaining steps in the calculation involve using (2.3.13), choosing the
temporal gauge (Gα = [1,0], G′β = [1,0]), using the definition (2.3.11) for
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RQ(k′′), and noting the form (5.7.4) for the probability of the three-wave pro-
cess. One finds that (5.8.6) reproduces the term involving NP (k′) in (5.8.7).
The term in (5.8.7) involving NQ(k′′) arises from another antihermitian part
of the propagator, specifically the zero of λ(k′′) at k′′ = k′′P . The term in
(5.8.7) involving NQ(k′′) is reproduced by interchanging the roles of primed
and unprimed quantities in the foregoing calculation. Thus the nonlinear ab-
sorption coefficient (5.8.6) provides an alternative, purely classical, treatment
of the three-wave interaction.

The nonlinear absorption coefficient (5.8.6) also includes the absorption
process corresponding to the scattering of waves by particles. The kinetic
equation (5.5.11) includes a nonlinear damping term, specifically, the final
term that is associated with induced scattering. This nonlinear absorption
coefficient is identified as

γ
(NL)
M (k) = −

∫
d4p

(2π)4

∫
d3k′

(2π)3
wMP (−k, k′, p)NP (k′) (k − k′)α ∂F (p)

∂pα
.

(5.8.9)
A purely classical derivation of (5.8.9) follows from four terms in (5.8.6)
with (5.8.3) and (5.7.13). These four terms arise from four different reso-
nant terms in (5.7.13). The term that contributes to induced Thomson scat-
tering arises from the cubic response tensor. Starting from the general form
(4.7.2), one sets k0 = −k, k1 = k, k2 = k′, k3 = −k′, to reproduce the
arguments in (5.8.3). The relevant imaginary part in the effective cubic re-
sponse (5.7.13) comes from applying the Landau prescription to the denomi-
nator (k1u+ k3u)2 = (ku− k′u)2 in the cubic response tensor. Evaluation of
the nonlinear absorption coefficient (5.8.6) reproduces (5.8.9), with only the
Thomson scattering term in the probability (5.5.8) with (5.5.5). In (5.5.8) with
(5.5.5) there is also a term that describes nonlinear scattering and two cross
terms that describe the interference between Thomson and nonlinear scatter-
ing. The cross terms are reproduced in (5.8.6), with (5.8.3) and (5.7.13), by
the terms that arise from resonances at ku−k′u = 0 in Π(2)µρθ(−k, k′, k−k′)
and Π(2)ηνσ(−k + k′, k,−k′) in (5.7.13). The relevant resonant parts follow
by applying the Landau prescription to the appropriate resonant denominator
in the expression (4.7.1) for Π(2). The remaining term that describes nonlin-
ear damping arises from an antihermitian part of a propagator, but from a
different contribution to Im [1/λ(k′′)] than that included in (5.8.8). It arises
from a particle resonance rather than a zero of the dispersion equation. This
antihermitian part of the propagator is identified by considering the anti-
hermitian part of the defining equation (2.1.7) for the propagator. One has
ΛHµ

ν(k)DAνρ(k) + µ0Π
Aµ

ν(k)DHνρ(k) = 0, which implies

DAµν(k) = −DHµ
ρ(k)ΠAρ

σ(k)DHσν(k). (5.8.10)

The antihermitian part ΠAµν(k) of the linear response tensor is given by
(4.1.5). Combining these results, the nonlinear absorption coefficient (5.8.6)
reproduces (5.8.9) with the complete expression for the probability (5.5.8)
with (5.5.5).
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5.8.4 Nonlinearity involving a single wave mode

The nonlinear effect of a wave in one mode on itself is treated by deriving an
equation for the complex amplitude. Assuming a quasi-monochromatic model
centered on a k = k̄, the amplitude is written, cf. (5.7.23),

Aµ
M (x) = eµMaM (x)e−ik̄x + e∗µ

M a
∗
M (x)eik̄x. (5.8.11)

The Fourier transform of (5.8.11) gives

Aµ
M (k) =

∑
±
Aµ

M±(k),

Aµ
M+(k) = eµMaM (k − k̄), Aµ

M−(k) = e∗µ
M a

∗
M (k + k̄). (5.8.12)

The nonlinear wave equation is obtained by writing Aµ(k) = Aµ
M+(k) +

Aµ
M−(k) in (5.8.2):

Λµ
ν(k)Aν

M±(k) = −µ0

∫
dλ(3) 3Π(3)µ

eff νρσ(−k, k1, k2, k3)

×Aν
M±(k1)A

ρ
M±(k2)Aσ

M∓(k3). (5.8.13)

On solving for the amplitude, as in (5.7.22), (5.8.13) gives

(ω − ωM + 1
2 iγM )aM (k − k̄) = −µ0

RM

ωM

∫
dλ(3) 3Π(3)

effM (−k, k1, k2, k3)

×aM (k1 − k̄)aM (k2 − k̄)a∗M (k3 + k̄),

3Π(3)
effM (−k, k1, k2, k3)
= e∗Mµ(k)eMν(k1)eMρ(k2)eMσ(k3)Π

(3)µνρσ
eff (−k, k1, k2, k3). (5.8.14)

The approximate equalities k ≈ k1 ≈ k2 ≈ −k3 ≈ kM are satisfied in
(5.8.14). The appropriate form for the effective cubic response tensor (5.7.13)
in this case is identified as follows. The beat disturbance is of low frequency
and can be assumed slow. The approximation to the cubic response tensor
for the case of fast disturbances with a slow beat between them is given by
(4.7.10). The effective cubic response tensor also includes the contribution
from the product of two quadratic responses and a propagator corresponding
to the beat disturbance; both quadratic response tensors are approximated
by (4.7.8), and the propagator at k − k′ is approximated by its longitudinal
part. On combining these one finds

3Π̃(3)µνρσ(k, k, k′,−k′) =
e2

m2
e

aµρ(k, k′, ū)aνσ(k, k′, ū)

× (k − k′)2 − [(k − k′)ū]2
[(k − k′)ū]2

{
ΠL(e)(k − k′) − µ0[ΠL(e)(k − k′)]2

ΛL(k − k′)

}
. (5.8.15)
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For a plasma that consists of electrons and ions, one has ΛL(k) = (kū)2 +
µ0Π

L(e)(k) + µ0Π
L(i)(k), and hence

ΠL(e)(k) − µ0[ΠL(e)(k)]2

ΛL(k)
=

ΠL(e)(k)
{
(kū)2 + µ0Π

L(i)(k)
}

(kū)2 + µ0ΠL(e)(k) + µ0ΠL(i)(k)

=
(kū)2

µ0

χL(e)(k)
[
1 + χL(i)(k)

]
KL(k)

, (5.8.16)

where it is conventional to introduce the susceptibilities, cf. (1.5.21) and
(1.5.22), χL(e,i)(k) = ΠL(e,i)(k)/ε0(kū)2 and the longitudinal dielectric con-
stant KL(k) = 1 + χL(e)(k) + χL(i)(k).

If the polarization of the waves is ignored, the resulting nonlinear wave
equation has the form

[ω′ − (ωM − ω̄) + 1
2 iγM ]aM (k′) = −RM

ωM

e2

2m2
e

∫
dλ′(3) |k′ − k′

1|2

×
χL(e)(k′ − k′1)

[
1 + χL(i)(k′ − k′1)

]
KL(k′ − k′1)

aM (k′1)aM (k′2)a
∗
M (k′3), (5.8.17)

where k′ = k − k̄, k′1 = k1 − k̄, k′2 = k2 − k̄, k′3 = k3 + k̄ denote Fourier
components of the slowly varying amplitude, and where dλ′(3) is defined in
the same way as dλ(3), cf. (1.3.7), but in terms of the primed quantities. On
including the polarization vectors, using the temporal gauge, one finds that
the polarization vectors should appear as the following extra factor

e∗
M (k) · eM (k2) eM (k1) · e∗

M (k3) (5.8.18)

in the integrand of (5.8.17). In the present case this factor is approximated
by unity in view of the normalization of the polarization 3-vector and of the
stated approximate equalities between the wavenumbers.

5.8.5 Zakharov equations

The nonlinear wave equation (5.8.17) describes how the envelope of the waves
evolves. There are two clearly separated timescales in the problem, one cor-
responding to the period of the waves, and the other corresponding to that
over which the envelope varies.

Before inverting the Fourier transform, it is convenient to separate (5.8.17)
into two equations. The first of these equations is the definition of the quantity

[δne(k′)]M = − ε0
me

χL(e)(k′)
[
1 + χL(i)(k′)

]
KL(k′)

|k′|2
∫
dλ′(2) aM (k′1)a

∗
M (k′2).

(5.8.19)
As the notation suggests, this quantity is interpreted as the self-consistent
electron density fluctuation induced by the nonlinearity. Then (5.8.17) be-
comes the second equation:
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[ω′ − (ωM − ω̄) + 1
2 iγM ]aM (k′) =

e2

2ε0me

RM

ωM

∫
dλ′(2) aM (k′1)[δne(k′2)]M .

(5.8.20)
Equation (5.8.20) describes the evolution of the wave amplitude due to a
nonlinear beating between the wave and the nonlinear electron density fluc-
tuations induced by the wave itself.

The Fourier inversion of (5.8.20) is straightforward once a specific wave
mode is chosen. The most widely investigated case is for Langmuir waves.
In this case the central frequency ω̄ is identified as the plasma frequency,
implying ωM − ω̄ → ωL − ωp = 3|k|2V 2

e /2ωp, where the dispersion relation
(2.6.3) for Langmuir waves is used. Then (5.8.20) gives[

i
∂

∂t
+

3V 2
e

2ωp
∇2 + 1

2 iγL

]
aL(x) =

ωp

ne
[δne(x)]LaL(x). (5.8.21)

Equation (5.8.21) describes how the wave amplitude evolves due to the non-
linear electron density fluctuations. A second equation is needed to describe
the evolution of the nonlinear electron density fluctuations.

A general form for the second equation may be written down by defining
the inverse Fourier transform of the coefficient in (5.8.19) as the operator

D̂(x) =
∫
d4k′

(2π)4
e−ik′x KL(k′)

χL(e)(k′)
[
1 + χL(i)(k′)

] . (5.8.22)

The inverse Fourier transform of (5.8.19) becomes

D̂(x)[δne(x)]L = ∇2 ε0|aL(x)|2
me

, (5.8.23)

where the approximation RL/ωL ≈ 1/2ωp is made. The most widely studied
case is when the density fluctuations have phase speeds intermediate between
the ion and electron thermal speeds, which corresponds to the sonic regime,
that is, to the regime in which one is close to the zero of KL(k′) that corre-
sponds to an ion acoustic wave. In this regime one has

KL(k)
χL(e)(k)

[
1 + χL(i)(k)

] ≈ ω2 + iωγs − |k|2v2s
ω2

pi

, (5.8.24)

with γs the damping rate for the ion acoustic waves (2.6.8). The operator
defined by (5.8.23) becomes

D̂(x) ≈ 1
ω2

pi

(
∂2

∂t2
+ γs

∂

∂t
− v2s∇2

)
. (5.8.25)

Equations (5.8.20) and (5.8.21), with (5.8.23), are the Zakharov equations [3],
which are usually derived from a fluid model. The nonlinear term on the right
hand side of (5.8.19) is attributed to the perturbation in the plasma frequency
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due to the density fluctuation. The term on the right hand side of (5.8.21)
is attributed to the ponderomotive force, cf. §3.2.7, which involves only the
gradient of the electric energy density in the waves in this case.

The Zakharov equations include the effects of induced scattering and three-
wave processes, but they are not restricted to these weak-turbulence effects.
The most notable of the strong-turbulence effects that is described using the
Zakharov equations is Langmuir collapse, where a uniform distribution of
long-wavelength (small k) Langmuir waves breaks up into spatially localized
packets whose dimensions decrease rapidly towards zero, with rapid transfer
of energy from small k to large k.
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6

Quantum field theory

Quantum field theory describes the interactions of particle in terms of the in-
teraction between fields, with the particles interpreted as quanta of the fields.
In the absence of any interactions, the fields are defined by their Lagrangian,
and each field satisfies appropriate field equations that follow from the Euler-
Lagrange equations applied to the Lagrangian. Interactions are determined by
interaction Lagrangians, that involve two or more fields. In a diagrammatic
approach, each interaction is described by a vertex, and interactions with two
or more vertices involve exchange of a virtual particle, described by the prop-
agator for the field. The propagator for the field is the Green’s function for the
field equation, and a particle corresponds to a pole in the propagator. Quan-
tum electrodynamics (QED) is the quantum field theory for the interaction
between the Dirac field, whose quanta are electrons and positrons, and the
electromagnetic (EM) field, whose quanta are photons. Scalar electrodynam-
ics (SED) is the counterpart of QED in which the particles are assumed to
be spinless, satisfying the Klein-Goron equation rather than Dirac’s equation.
In the simplest generalization of QED to quantum plasmadynamics (QPD),
the electromagnetic field is replaced by the self-consistent field in a plasma.
The classical wave wave fields corresponding to each natural mode, M , of the
medium, are quantized, so that the mode of a wave quantum or ‘photon’ needs
to be specified.

Relativistic wave equations (Dirac’s equation and the Klein Gordon equa-
tion) are introduced in §6.1. Solutions of these equation are written down in
§6.2, both in a generic form and for free particles, corresponding the plane
wavefunctions. The Lagrangians for Dirac’s and Klein-Gordon fields are identi-
fied in §6.3 and used to calculate the energy-momentum tensor and to identify
interaction terms. The quantization of fields is introduced in §6.4. Propagators
are constructed in §6.5, both as Green’s functions and as vacuum expectation
values. The S-matrix and its expansion are defined in §6.6. Feynman diagrams
are introduced in §6.7.
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6.1 Relativistic wave equations

The generalization of the nonrelativistic Schrödinger equation to a relativistic
counterpart is not immediately obvious. The Schrödinger equation is of first
order in the time derivative and second order in the space derivatives, and a
relativistic generalization must be of the same order in both time and space
derivatives. This is because the wave equation must retain its form under a
Lorentz transformation which mixes up time and space derivatives. There are
two natural generalizations: the Klein-Gordon equation, which is second order
in both time and space derivatives, and Dirac’s equation, which is first order
in both. The arguments leading to these two equations are presented in this
section, followed by some details of the Dirac algebra.

6.1.1 State functions and operators in a Hilbert space

Before considering relativistic quantum mechanics specifically, it is appro-
priate to summarize an axiomatic formulation of quantum mechanics. The
axiomatic approach was initiated by Dirac, and it resulted in the recognition
that the approaches used by Schrödinger, in his wave mechanics, and Heisen-
berg, in his matrix mechanics, are different representations of a more general
abstract formulation of quantum theory.

The state of a system is denoted by a state function, which is a vector in
complex vector space called a Hilbert space, H. Dirac wrote a vector as a ket,
| 〉, with information on the state of the system included inside the ket. A basic
property of a Hilbert space is that if |1〉 and |2〉 are two vectors in the Hilbert
space, then c1|1〉+ c2|2〉 is also a vector in the Hilbert space, where c1, c2 are
arbitrary complex numbers. There is an adjoint Hilbert space, H†, and Dirac
referred to a vector in the adjoint state as a bra, 〈 |. The bra that is the adjoint
of c1|1〉+c2|2〉 is c∗1〈1|+c∗2〈2|. The inner product of the bra 〈1| and the ket |2〉
is a complex number 〈1|2〉 = 〈2|1〉∗. An operator, Ô, in H transforms one ket
into another, and the adjoint operator, Ô†, in H† has the corresponding effect
on a bra. If the transformed ket is equal to the original ket times a number,
Ô|o〉 = o|o〉 say, then the ket |o〉 is said to be an eigenstate of the operator Ô,
and the number, o, is its eigenvalue. A self-adjoint operator, Ô = Ô†, has real
eigenvalues, o = o∗. The operation of measurement of an observable quantity
must result in a real number, so that every observable must be described by
a self-adjoint operator.

The complex number Oab = 〈a|Ô|b〉 = O∗
ba is referred to as the matrix

element for the operator Ô between the states a and b. The moduli squared
of matrix elements of an operator corresponding to an observable quantity
play a central role in the theory. Any transformation in the Hilbert space that
does not change the matrix elements has no effect on observable quantities. In
particular, the matrix elements are unchanged by a unitary transformation.
As a consequence, the physical description of states and of operators is not
unique, and is unchanged by the transformation
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| 〉′ = Û | 〉, Ô′ = Û ÔÛ †, Û Û † = 1, (6.1.1)

where Û is any unitary operator, and with ′〈 | = (| 〉′)† = 〈 |Û †.
Measurement of an observable usually changes the state of a system. An

exception is measurement of an observable for a system in an eigensate of that
observable. If two different observables, A and B say, can be measured simul-
taneously, implying that measurement of one has no effect on measurement
of the other, then the order in which the measurements are made is unimpor-
tant. In this case, the two operators, Â and B̂, are required to commute. If
ÂB̂| 〉 is equal to B̂Â| 〉 for every state of the system, then the commutator

[Â, B̂] = ÂB̂ − B̂Â, (6.1.2)

is zero.
The eigenkets of any observable span the Hilbert space. However, the eigen-

kets of a single observable may be degenerate, in the sense that the eigenvalue
of the single observable does not uniquely specify the state of a system. A com-
plete set of commuting observables is such that the simultaneous eigenstates
have no degeneracy. The eigenkets of a complete set of commuting observables
may be used as basis vectors in the Hilbert space.

6.1.2 Link between classical and quantum descriptions

The link between quantum mechanics and classical mechanics is though a
Hamiltonian description of the system. Consider a system with n degrees of
freedom, described by n generalized coordinates, qi, i = 1, . . . n, and the n
generalized or canonical momenta, pi, i = 1, . . . n. The coordinates and mo-
menta are observables, denoted by operators q̂i, p̂i. Heisenberg, in his matrix
mechanics, recognized that the classical Poisson bracket of two observables
translates into the quantum mechanical commutator of the corresponding op-
erators, with a factor ih̄. This relation is incorporated into a postulate of
quantum mechanics. This postulate is that the coordinates and momenta sat-
isfy the relations (ordinary units)

[q̂i, q̂j ] = 0, [p̂i, p̂j ] = 0, [q̂i, p̂j ] = ih̄δij , (6.1.3)

which are called the basic commutation relations. The commutation relations
(6.1.3) imply that for any operator Ô that is a function of the q̂i and p̂i, one
has (ordinary units)

[q̂i, Ô] = ih̄
∂Ô

∂p̂i
, [p̂i, Ô] = −ih̄∂Ô

∂q̂i
. (6.1.4)

6.1.3 Pictures of the time evolution

The time evolution of a quantum mechanical system may be described in
terms of the evolution of the state function, called the Schrödinger picture, in
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terms of the evolution of the operators, called the Heisenberg picture, or in
terms of a mixture of the two, with the interaction picture being the relevant
example. Two different pictures are related by a unitary transformation, with
the unitary operator being a function of time.

The time evolution of a classical system is determined by the Hamilto-
nian operator. Let the Hamiltonian be H(q1, . . . , qn; p1, . . . , pn; t). Hamilton’s
equations are

dqi
dt

=
∂H

∂pi
,

dpi

dt
= −∂H

∂qi
,

dE

dt
=
∂H

∂t
, (6.1.5)

where E is the energy of the system.
In the Heisenberg picture, the time evolution of the coordinates and mo-

menta is determined by writing Hamilton’s equations (6.1.5) in terms of op-
erators, and applying (6.1.4) to Ĥ . This gives (ordinary units)

ih̄
dq̂i
dt

= [q̂i, Ĥ ], ih̄
dp̂i

dt
= [p̂i, Ĥ ]. (6.1.6)

For any other operator that is a function of the coordinates and momenta,
(6.1.6) implies (ordinary units)

ih̄
dÔ

dt
= [Ô, Ĥ], (6.1.7)

which is assumed to apply to all operators in the Heisenberg picture.
Consider the time evolution of the matrix element Oab = 〈a|Ô|b〉. Its

time derivative in the Heisenberg picture follows from the matrix element of
(6.1.7) for the states a, b, with the state functions, 〈a|, |b〉 independent of
time by hypothesis. Alternatively, the same time dependence of Oab results if
allows the state functions to evolve, with the operators independent of time
by hypothesis. This alternative is the Schrödinger picture, and it requires that
the state functions evolve according to (ordinary units)

ih̄
d

dt
| 〉 = Ĥ | 〉, (6.1.8)

which is the time-dependent Schrödinger equation.
In the interaction picture, the Hamiltonian is separated into two parts, a

background part, H0, that is independent of time, and an interaction part,
HI . In the absence of the interaction part, the state functions are assumed
to be fixed, which corresponds to the Heisenberg picture for a system with
Hamiltonian H0. The state functions evolve due to the interaction term, as in
the Schrödinger picture for a system with Hamiltonian HI .

6.1.4 Representations

A representation of the Hilbert space is obtained by choosing a set of com-
muting operators, and using their eigenkets as a set of basis vectors for the
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Hilbert space. In the coordinate representation, also called the Schrödinger
representation, the eigenkets of the coordinate operators are chosen as the
basis vectors. Let |q1, . . . , qn〉 be such an eigenket, where qi is the eigen-
value of q̂i. The state function | 〉 is represented by the so-called wavefunction
Ψ(q1, . . . , qn) = 〈q1, . . . , qn| 〉. By construction, the eigenvalue of q̂i is qi; that
is, 〈q1, . . . , qn|q̂i| 〉 = qi〈q1, . . . , qn| 〉. It follow that in the coordinate repre-
sentation, the operator q̂i is represented by multiplication by qi. To satisfy
(6.1.4), the operator p̂i must be represented by differentiation with respect to
qi, specifically by −i∂/∂qi.

In the coordinate representation, the Schrödinger equation (6.1.9) becomes

ih̄
d

dt
Ψ(q1, . . . , qn) = Ĥ Ψ(q1, . . . , qn),

Ĥ = H
(
q1, . . . , qn;−ih̄ ∂

∂q1
, . . . ,−ih̄ ∂

∂qn
; t
)
. (6.1.9)

The nonrelativistic Schrödinger equation applies in the coordinate represen-
tation and the Schrödinger picture, and follows from (6.1.9) by identifying the
Hamiltonian with that for a nonrelativistic particle.

The Klein-Gordon and Dirac equations also apply in the coordinate rep-
resentation and the Schrödinger picture. A problem encountered with (6.1.9)
is that the Hamiltonian for a relativistic particles includes a square root,
H = (m2 + p2)1/2, and the question arises as to how one takes the square
root of an operator. In the Klein-Gordon equation one effectively squares to
remove the square root, and in Dirac’s equation on introduces matrices that
effectively allow one to take the square root.

6.1.5 Klein-Gordon equation

The general form of the Schrödinger equation (in natural units) is (i∂/∂t −
Ĥ)Ψ(x) = 0. Operating on this equation with (i∂/∂t+Ĥ) leads to an equation
in which the Hamiltonian appears only squared, with Ĥ2 = m2 + p̂2. In the
coordinate representation this equation becomes the Klein-Gordon equation,

(∂µ∂µ +m2)Ψ(x) = 0, (6.1.10)

where ∂µ∂µ = ∂2/∂t2 −∇2 is the Lorentz invariant d’Alembertian operator.
The Klein-Gordon wavefunction, Ψ(x), is an invariant, and the particles that
it describes have spin 0.

One generalization of the Klein-Gordon is to replace the scalar wavefunc-
tion by a 4-vector; the resulting theory is found to describe particles with
spin 1. Replacing the scalar wavefunction by a second rank 4-tensor is found
to describe particles with spin 2, and so on.

Historically, a number of difficulties were encountered with the Klein-
Gordon equation, but these have since been resolved. One specific difficulty
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concerns the appearance of negative energy solutions. These are unavoidable.
The Hamiltonian does not depend on time or position, so that energy and
momentum are conserved, implying that there are solutions ∝ exp(−iPx),
where Pµ are the components of the conserved 4-momentum. Then (6.1.10)
requires P 2 = (P 0)2 −P 2 = m2. There are both positive and negative energy
solutions, P 0 = ±(m2 + P 2)1/2. One cannot ignore the negative energy solu-
tions without violating one of the fundamental rules of quantum mechanics:
the eigenkets of any self-adjoint operator span the Hilbert space. Discarding
negative energy solutions would correspond to throwing away half of the eigen-
kets of the Hamiltonian, and the mathematical basis for quantum mechanics
itself would not be valid. It is now known how to interpret these negative
energy solutions: they are regarded as describing antiparticles.

6.1.6 Dirac equation

Dirac’s equation is first order in space and time derivatives. One form of
Dirac’s equation may be obtained by factorizing the Klein-Gordon equation
into two first order equations. Suppose there are two wavefunctions, ξ and
η, both of which satisfy the Klein-Gordon equation, and let each of these
consists of two spin components. With σ = (σx, σy, σz) denoting the three
Pauli matrices, assume that the components of the vector operator p̂ appear
only in the combination σ · p̂. One has (σ · a)2 = a2 for any vector a, with
a → p̂ here. Let the Hamiltonian operator be written as Ĥ → p̂0 = i∂/∂t.
The Klein-Gordon equation is assumed to factorize into the pair of equations

(p̂0 + p̂ · σ)η = mξ, (p̂0 − p̂ · σ)ξ = mη. (6.1.11)

The pair of equations (6.1.11) for ξ and η, each of which has two spin compo-
nents. combines into a single equation for a Dirac wavefunction, Ψ , that has
four components. This may be written in the block matrix form,(

0 p̂0 + p̂ · σ
p̂0 − p̂ · σ 0

)(
ξ
η

)
= m

(
ξ
η

)
. (6.1.12)

where each element of the matrix is itself a 2× 2 matrix, with 0 the null 2× 2
matrix. Equation (6.1.12) is one form of Dirac’s equation, specifically, in the
spinor representation of the Dirac matrices.

6.1.7 Covariant form of Dirac’s equation

Equation (6.1.12) is not in a manifestly covariant form. It may be converted
to such a form by regarding the matrix operator on the left hand side as a sum
of four components of the operator p̂µ = i∂µ, and regarding the matrix coef-
ficients of these four components as the components of a 4-vector, γµ. These
matrices are referred to as the Dirac matrices. It is convenient to introduce
the slash notation
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/A = γµAµ, /∂ = γµ∂µ, (6.1.13)

and so on. Dirac’s equation then has the covariant form

(i/∂ −m)Ψ(x) = (/̂p−m)Ψ(x) = 0. (6.1.14)

The Dirac matrices, γµ, are required to be such that on operating on
(6.1.14) with (i/∂ + m) the resulting equation reduces to the Klein-Gordon
equation (6.1.10). This requires /∂2 = ∂µ∂µ, which can be expressed in the
form

γµγν + γνγµ = 2gµν , (6.1.15)

where it is implicit that the unit (4 × 4) matrix multiplies 2gµν on the right
hand side.

The wavefunction Ψ(x) in Dirac’s equation is a spinor in a 4-dimensional
Dirac spin space. The Dirac spin space is a subspace of the Hilbert space, and
it is conventional to represent a vector in this subspace by a column matrix.
Then the adjoint wavefunction Ψ†(x) is represented by a row matrix in the
adjoint subspace. The entries in the row matrix representation of Ψ †(x) are
the complex conjugates of the entries in the column matrix representation of
Ψ(x).

The most widely used representation of the Dirac matrices is called the
standard representation. (The spinor representation is used above to intro-
duce Dirac’s equation, but otherwise is not used here.) Different representa-
tions are related by a transformation matrix, S say, such that the transformed
wavefunction is SΨ , and the transformed γµ matrices are SγµS−1. Note that
the traces of γµ are obviously zero in the spinor representation (the diagonal
entries in (6.1.12) are all zero) and that the trace in unaffected by such a
transformation: the trace of a product of matrices in unchanged by a cyclic
permutation of the matrices, so that Tr [SγµS−1] = Tr [S−1Sγµ] = Tr [γµ],
where Tr denotes the trace. It follows that the trace of the γµ is zero in all
representations.

6.1.8 Dirac Hamiltonian

The Dirac Hamiltonian is identified by rewriting (6.1.14) in the form of the
Schrödinger equation. This is achieved by multiplying (6.1.14) by γ0 and using
(γ0)2 = 1, as implied by (6.1.15) with µ = ν = 0. Thus the Hamiltonian is
identified as

Ĥ = α · p̂ + βm, α = γ0γ, β = γ0, (6.1.16)

with p̂ = −i∂/∂x. The Hamiltonian is an observable (the energy in a time-
independent system) and is required to be self adjoint, or hermitian in the
present context. This implies a restriction on acceptable choices of the γ-
matrices. Any choice must lead to hermitian forms for α and β. That is, one
must have α† = α, β† = β, and these require (γ0)† = γ0, γ† = −γ. A more
concise form is
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(γµ)† = γ0γµγ0. (6.1.17)

The factors of γ0 in (6.1.17) always appear when taking the adjoint, and
it is convenient to incorporate one of the factors into the Dirac adjoint of the
wavefunction:

Ψ(x) = Ψ †(x)γ0. (6.1.18)

Then the adjoint of Dirac’s equation in the form (6.1.14) becomes

Ψ(x) (/̂p−m) = 0, (6.1.19)

where the operator operates to the left.

6.1.9 Standard representation

The specific choice for the Dirac matrices used here is referred to as the
standard representation. It corresponds to

γ0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , γ1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ,

γ2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0

⎞
⎟⎟⎠ , γ3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (6.1.20)

A convenient way of writing these and other 4×4 matrices is in terms of block
matrices. Let 0 and 1 be the null and unit 2 × 2 matrices. One writes

Σ =
(

σ 0
0 σ

)
, ρx =

(
0 1
1 0

)
,

ρy =
(

0 −i1
i1 0

)
, ρz =

(
1 0
0 −1

)
, (6.1.21)

where the 2 × 2 matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (6.1.22)

are the usual Pauli matrices. In this representation one has

γµ = [ρz , iρyΣ], α = ρxσ, β = ρz . (6.1.23)
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6.1.10 Dirac matrices σµν and γ5

Two additional Dirac matrices that play an important role in the theory are

σµν = 1
2 [γµ, γν ], (6.1.24)

which plays the role of a spin angular momentum, and

γ5 = −iγ0γ1γ2γ3, (6.1.25)

which satisfies the relations

γµγ5 + γ5γµ = 0, (γ5)2 = 1, (γ5)† = γ5. (6.1.26)

One also has
γµγνγργσγ5 = −iεµνρσ. (6.1.27)

In the standard representation one has γ5 = −ρx. The spin 4-tensor σµν ,
defined by (6.1.24), has components

σµν =

⎛
⎜⎜⎝

0 αx αy αz

−αx 0 −iσz iσy

−αy iσz 0 −iσx

−αz −iσy iσx 0

⎞
⎟⎟⎠ . (6.1.28)

Different definitions of σµν and γ5 are used in the literature. The choices
made here are those made in Ref. [1]. In particular, note that the many authors
choose γ5 with the opposite sign, and that this affects the sign of the projection
operators for neutrinos, cf. (6.2.22).

6.1.11 Basic set of Dirac matrices

There are sixteen independent 4× 4 matrices and for the Dirac matrices it is
sometimes convenient to choose a set of 16 basis vectors. A specific choice of
16 independent matrices is the set

γA =
[
1, γµ, iσµν , iγµγ5, γ5

]
. (6.1.29)

This choice involves a scalar and a pseudo scalar (1, γ5), a 4-vector and a
pseudo 4-vector (γµ, iγµγ5) and an antisymmetric second rank 4-tensor (σµν).
These have 1, 1, 4, 4, and 6 components, respectively. This set is chosen such
that the analogous set, γA with indices down, γA = [1, γµ, iσµν , iγµγ

5, γ5]
satisfy

γAγA = 1 no sum, γAγB = δAB . (6.1.30)

The expansion of an arbitrary Dirac matrix, O say, in this basis then gives

O =
∑
A

cAγ
A, cA = 1

4Tr [γAO]. (6.1.31)
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6.1.12 Traces of products of γ-matrices

The traces of products of γ-matrices are important in detailed calculations in
QED. Consider

Tα1α2...αn = Tr
(
γα1γα2 . . . γαn

)
. (6.1.32)

The trace of γµ is zero, as are the traces of σµν , γµγ5 and γ5. The trace
of a product of an odd number of γ-matrices is also zero: Tα1α2...αn = 0
for n odd. The trace of a product of two γ-matrices is nonzero. This trace
may be evaluated as follows. First the invariance of the trace of a product of
matrices under cyclic permutations of the matrices implies T µν = T νµ. The
trace of (6.1.15) then implies T µν = 4gµν, where the factor of 4 arising from
the trace of the unit 4 × 4 matrix. Using the invariance of the trace under
cyclic permutations and (6.1.15) allows one to evaluate the traces (6.1.32) for
all even n. One finds

T µν = 4gµν , T µνρσ = 4
[
gµνgρσ − gµρgνσ + gµσgνρ

]
, (6.1.33)

T µνρσαβ = 4
[
gµνT ρσαβ − gµρT νσαβ + gµσT νραβ − gµαT νρσα + gµβT νρσα

]
,

(6.1.34)
and so on.
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6.2 Wavefunctions for relativistic particles

In QPD, it is useful to consider wavefunctions of two types: generic wavefunc-
tions in which the only assumption is that the particle energy is a constant
of the motion, and plane wavefunctions. The generic wavefunctions describe
particles in a magnetostatic field or other given field. Plane wavefunctions
describe ‘free’ particles in the absence of such fields.

6.2.1 Generic solutions

Suppose that the Klein-Gordon equation or Dirac’s equation has solutions
with energy eigenvalues εεq, where ε = +1 corresponds to a particle, ε = −1
corresponds to an antiparticle, and q denotes a set of quantum numbers. The
set q corresponds to a complete set of commuting variables, and the choice
need not be unique. The set q usually includes both discrete and continuous
quantum numbers, including the spin. For the Klein-Gordon equation the spin
is zero, and for Dirac’s equation the set q includes the spin, which is usually
written as s/2 with s = ±1. However, the spin operator is not uniquely defined,
and a separate discussion is needed to include the effects of spin correctly, cf.
§7.2. For a free particle, the set q consists of the 3-momentum, p, and the spin.
The 3-momentum is defined here to be the physical momentum of a particle or
an antiparticle, corresponding to the eigenvalues of the 3-momentum operator
being εp, and the eigenvalues of the 4-momentum operator being Pµ = εpµ.

Let the generic solution of Dirac’s equation be written in the form

ψ(x) =
∑
ε,q

ψε(x) e−iεεq , ψ(x) =
∑
ε,q

ψ
ε
(x) eiεεq , (6.2.1)

where the sum is over ε = ±1 and over the set of quantum numbers q. For
the Klein-Gordon equation the adjoint is written as ψ∗(x) rather than ψ(x).
The normalization of the wavefunction requires care because the usual nonrel-
ativistic normalization, to one particle, is not well defined: one cannot ignore
virtual particle antiparticle pairs. The choice of normalization depends on the
choice q, and here only the specific case of a free particle is discussed in de-
tail. The choice for a free particle is to an energy ε = (m2 + |p|2)1/2 in the
normalization volume, V .

For a free particle field, the sum over states q is replaced according to

∑
q

→
∑

s

V

∫
d3p

(2π)3
. (6.2.2)

Orthogonality relations for discrete states involve a Kronecker delta, δqq′ ,
which is equal to unity for q = q′ and to zero otherwise. For free particles, the
Kronecker delta is replaced by a Dirac δ-function according to

δqq′ → δss′
(2π)3

V
δ3(p − p′). (6.2.3)
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6.2.2 Plane wavefunctions

A plane wavefunction has the form

Ψ(x) =
∑
ϕ(P ) e−iPx, (6.2.4)

with Pµ = [P 0,P ]. The solution (6.2.4) applies for both the Klein-Gordon and
Dirac equations, but these need to be treated separately. In both cases one
may write Pµ = εpµ, and the solutions require P 0 = εε, ε = (m2 + |p|2)1/2.
There is an unspecified sum over states in (6.2.4): comparison with (6.2.1)
shows that the sum is of the form (6.2.2),

On substituting (6.2.4) into either the the Klein-Gordon equation, (6.1.10),
the solution requires P 2 = m2. The normalization of ϕ(P ) to an energy ε =
|P 0| in the volume V requires that the the energy density in the field be
identified. A Lagrangian approach is used in §6.3 to construct the energy-
momentum tensor for the field. For the Klein-Gordon field this leads to the
identification of ϕ(P ) = 1/

√
2εV , with ε = |P 0|, as the desired normalization.

Thus (6.2.4), for spin 0, becomes

Ψ(x) = ϕε(p) e−iεpx, ϕε(p) =
1√
2εV

, (6.2.5)

with ε = (m2 + p2)1/2.
In the plane wavefunction (6.2.4) for Dirac’s equation, ϕ(P ), is a Dirac

spinor (a column vector in a matrix representation) with four components.
On substituting (6.2.4) into Dirac’s equation one obtains

(/P −m)ϕ(P ) = 0. (6.2.6)

One may regard (6.2.6) as a set of four coupled equations for the four spinor
components of ϕ(P ). The condition for a solution to exist is that the deter-
minant of the coefficients vanish:

det (/P −m) = (P 2 −m2)2 = 0. (6.2.7)

The solutions,
P 0 = ε (m2 + P 2)1/2, (6.2.8)

are doubly degenerate. As for the Klein-Gordon equation, one may write Pµ =
εpµ, where pµ is the physical 4-momentum of the particle or antiparticle.

Solutions for the wavefunctions may be constructed from the matrix of
cofactors of /P−m, and this matrix is proportional to /P+m. Four independent
solutions are obtained by choosing any two columns of /P + m (or any two
linearly independent combinations of the four columns), and setting Pµ = εpµ.
One is free to identify the two columns as corresponding to s = ±1 and refer
to these as spin up and spin down. However, this procedure corresponds to an
implicit choice of spin operator. Well-defined spin operators are identified in
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§7.2, where the spin eigenfunctions for three such operators (the helicity, the
magnetic moment and the electric moment) are written down. When one is not
interested in the spin, one sums or averages over the spin states, and then the
choice of spin operator is irrelevant. The implicit choice of spin eigenfunctions
is made here for convenience, and they are to be used only in the context of
‘unpolarized’ particles, where one sums or averages over the spin states.

6.2.3 Solutions in the standard representation

In the standard representation one has

/P +m =

⎛
⎜⎜⎝
P 0 +m 0 −Pz −P−

0 P 0 +m −P+ Pz

Pz P− −P 0 +m 0
P+ −Pz 0 −P 0 +m

⎞
⎟⎟⎠ , (6.2.9)

with P± = Px ± iPy, where Px, Py, Pz are the components of the 3-vector P .
On introducing labels ε = ±1 and s = ±1, and choosing the first two

columns in (6.2.9), one obtains the desired four solutions, which are of the
form

Ψ(x) =
∑

s

V

∫
d3p

(2π)3
ϕε

s(εp) e−iεpx, (6.2.10)

To impose the normalization to an energy ε in the volume V , one needs to
identify the energy density is the Dirac field, which is constructed in §6.3. The
resulting normalized solutions are

ϕε
s(εp) =

1
[2εε(εε+m)V ]1/2

⎡
⎢⎢⎣1 + s

2

⎛
⎜⎜⎝
εε+m

0
εpz

εp+

⎞
⎟⎟⎠+

1 − s
2

⎛
⎜⎜⎝

0
εε+m
εp−
−εpz

⎞
⎟⎟⎠
⎤
⎥⎥⎦ .

(6.2.11)

6.2.4 Orthogonality and completeness relations

Two fundamental requirements of quantum mechanics are that wavefunctions
corresponding to different eigenvalues be orthogonal, and that the wavefunc-
tions of any specific observable span the Hibert space. These lead to orthogo-
nality and completeness relations for the wavefunctions (6.2.10) with (6.2.11).

The orthogonality relations for the wavefunctions can be written either in
terms of the adjoint, ϕε†

s (εp), or the Dirac adjoint, ϕ̄ε
s(εp). These give

ϕε†
s (εp)ϕε′

s′(ε′p) =
δεε

′
δss′

V
, ϕ̄ε

s(εp)ϕε′
s′(ε′p) =

mδεε
′
δss′

εεV
, (6.2.12)

respectively. The completeness relations are∑
s=±1

ϕε
s(εp) ϕ̄ε

s(εp) =
ε/p+m
2εεV

. (6.2.13)
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6.2.5 Wavefunctions us(p), vs(p)

An alternative notation that is used widely involves an electron wavefunction
u and a positron wavefunction v. These are defined by writing (6.2.11) in the
form

ϕ+
s (p) =

us(p)√
2εV

, ϕ−
s (−p) =

vs(p)√
2εV

, (6.2.14)

with the explicit forms

u+(p) =
1√
ε+m

⎛
⎜⎜⎝
ε+m

0
pz

p+

⎞
⎟⎟⎠ , v+(p) =

1√
ε−m

⎛
⎜⎜⎝
ε−m

0
pz

p+

⎞
⎟⎟⎠ ,

u−(p) =
1√
ε+m

⎛
⎜⎜⎝

0
ε+m
p−
−pz

⎞
⎟⎟⎠ , v−(p) =

1√
ε−m

⎛
⎜⎜⎝

0
ε−m
p−
−pz

⎞
⎟⎟⎠ , (6.2.15)

where the relative phase of each wavefunction is unimportant and is chosen
for convenience in writing.

The orthogonality relations (6.2.12) translate into

u†s(p)us′(p) = v†s(p)vs′(p) = 2εδss′ ,

ūs(p)us′(p) = −v̄s(p)vs′ (p) = 2mδss′ ,

ūs(p)vs′(p) = v̄s(p)us′(p) = u†s(p)vs′ (p) = v†s(p)us′(p) = 0. (6.2.16)

The completeness relation (6.2.13) translates into∑
s=±

us(p)ūs(p) = /p+m,
∑
s=±

vs(p)v̄s(p) = /p−m. (6.2.17)

6.2.6 Neutrinos

Neutrinos are massless spin- 1
2 particles. Massless particles necessarily propa-

gate at the speed of light, and such particles can have only two spin states,
corresponding to two helicity states. Unlike electrons, and other fermions with
non-zero mass, there is effectively a unique choice for the spin operator for a
massless fermion.

For m = 0 the covariant form of Dirac’s equation (6.1.14) reduces to

i/∂ Ψ(x) = 0. (6.2.18)

A plane wave solution of (6.2.18) is of the form Ψ(x) ∝ e−iPx, so that it is an
eigenfunction of the 4-momentum operator by construction:
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p̂µ Ψ(x) = Pµ Ψ(x). (6.2.19)

To construct spin eigenfunctions we need to introduce an appropriate spin
operator. A suitable operator is the helicity operator

ŵµ = 1
4 [γµ, /̂p]γ5, (6.2.20)

Using (6.2.18), (6.2.19) and (6.2.20), one finds

ŵµΨ(x) = − 1
2p

µγ5Ψ(x), ŵµγ5Ψ(x) = − 1
2p

µΨ(x). (6.2.21)

It follows that

ΨL(x) = LΨ(x), L = 1
2 (1 + γ5); ΨR(x) = RΨ(x), R = 1

2 (1 − γ5);
(6.2.22)

are simultaneous eigenfunctions of p̂µ and ŵµ with eigenvalues of ŵµ being
− 1

2p
µ and 1

2p
µ, respectively. These are the helicity eigenfunctions. The Dirac

adjoints of (6.2.22) are

ΨL(x) = Ψ(x)R, ΨR(x) = Ψ(x)L. (6.2.23)

The operators 1
2 (1 ± γ5) may be regarded as projection operators. They

satisfy
L2 = L, R2 = R, (6.2.24)

and project onto the left-handed and right-handed helicity states, respectively.
Note that many authors define γ5 with the opposite sign to that chosen in
(6.1.25), and that this changes the sign of γ5 in the definitions of these pro-
jection operators in (6.2.22).

It is found that neutrinos are left handed, corresponding to ΨL(x). The fact
that there are no right-handed neutrinos, underlies parity non-conservation
in the weak interactions. For any neutrino state one may replace Ψ(x) by
ΨL(x) = LΨ(x).
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6.3 Lagrangian formulation

In a Lagrangian formulation, the field is described by a Lagrangian density,
such that the Euler-Lagrange equations correspond to the relevant relativistic
wave equation. The Lagrangian formulation allows one to calculate the energy-
momentum tensor and other relevant properties of the field. The Lagrangians
for the Klein-Gordon and Dirac fields are identified in this section, and are
used to calculate the energy-momentum tensor for the field.

6.3.1 Klein-Gordon Lagrangian

The Lagrangian density for the Klein-Gordon field is

L(x) = (∂µΨ)∗(∂µΨ) −m2Ψ∗Ψ. (6.3.1)

The Euler-Lagrange equations for variations with respect to Ψ∗ and Ψ give
the Klein-Gordon equation and its adjoint, respectively. Specifically, one has

∂µ
∂L

∂(∂µΨ∗)
− ∂L
∂Ψ∗ = ∂µ(∂µΨ) +m2Ψ = 0, (6.3.2)

which reproduces (6.1.10). The energy-momentum tensor is

T µν = (∂µΨ∗)(∂νΨ) + (∂νΨ∗)(∂µΨ) − gµν [(∂αΨ)∗(∂αΨ) −m2Ψ∗Ψ ]. (6.3.3)

The normalization condition for the plane wavefunction introduced in §6.2
is to an energy ε in the volume V . This requires that the spatial integral of
the energy density, T 00, be equal to ε. For the plane wavefunction (6.2.4), the
µ = 0, ν = 0 component of (6.3.3) gives T 00 = V [(P 0)2 + P 2 +m2]|φ(P )|2 =
2V ε2|φ(P )|2. Hence the normalized solution corresponds to ϕ(P ) = 1/

√
2εV ,

which is the result used in (6.2.5).

6.3.2 Dirac Lagrangian

For the Dirac Lagrangian it is convenient to choose the independent fields as
Ψ and Ψ , so that the Euler-Lagrange equations are

∂µ
∂L(x)

∂[∂µΨ(x)]
− ∂L(x)
∂Ψ(x)

= 0, ∂µ
∂L(x)

∂[∂µΨ(x)]
− ∂L(x)
∂Ψ(x)

= 0. (6.3.4)

A choice of Lagrangian such that (6.3.4) reproduces (6.1.14) and (6.1.19) is

L(x) =
i

2

{
Ψ(x)γµ∂µΨ(x) −

[
∂µΨ(x)

]
γµΨ(x)

}
−mΨ(x)Ψ(x). (6.3.5)

The energy momentum tensor for the Dirac field follows from (3.1.21) with
(6.3.5):
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T µν(x) =
∂L(x)
∂[∂µΨ(x)]

∂νΨ(x) +
∂L(x)

∂[∂µΨ(x)]
∂νΨ(x) − gµνL(x)

= − i
2
[
∂νΨ(x)

]
γµΨ(x) +

i

2
Ψ(x)γµ∂νΨ(x) − gµνL(x). (6.3.6)

The normalization of the plane wavefunction introduced in §6.2 is to an
energy ε in the volume V . The energy density T 00 in the Dirac field for a
plane wavefunction follows by inserting (6.2.4) into the µ = ν = 0 component
of (6.3.6). Thus the normalization condition is

− i
2

∫
d3x

[
(∂0Ψ)γ0Ψ − Ψγ0(∂0Ψ)

]
= εε. (6.3.7)

Note that the sign ε needs to be included on the right hand side of (6.3.7)
because T 00 is and odd function of P 0 for spin 1

2 ; no such sign is required for
bosons because T 00 is an even function of P 0 for spin 0.

6.3.3 Particle action and occupation numbers

Two different ways of determining the occupation numbers for electrons and
positrons are available. One is based on a Lagrangian approach, with the
occupation number equated to the action for the field in momentum space.
The other is related to the energy-momentum tensor.

The action integral for the Dirac field has a momentum space representa-
tion obtained by writing

I =
∫
d4xL(x) = TV

∫
d3p

(2π)3
L(p). (6.3.8)

On inserting the Lagrangian (6.3.5) for the Dirac field and the wavefunctions
(6.2.10) for free particles with 4-momentum P into (6.3.8), one identifies

L(P ) =
∑

ε,s=±
ϕ̄ε

s(εp)(/P −m)ϕε
s(εp) (2π)3 δ3(P − εp), (6.3.9)

with P 0 identified as εε, and with P = εp implied by the δ-function.
The independent variables in the Lagrangian (6.3.9) are ϕ̄ε

s(εp), ϕ
ε
s(εp)

and also the phase, written as Px, and its derivative, ∂µ(Px) = Pµ. Variation
of L(P ) with respect to ϕ̄ε

s(εp) and ϕε
s(εp) leads to the wave equation in

momentum space (ε/p−m)ϕε
s(εp) = 0 and its adjoint, respectively.

The derivation of the action for the particles follows from the Euler-
Lagrange equation for the phase. The Lagrangian depends on the phase deriva-
tive but not on the phase, and hence the Euler-Lagrange equation implies the
conservation law

∂µ

(
∂L(P )
∂(∂Pµ)

)
= 0. (6.3.10)
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The conserved quantity is the action for the Dirac field:

∂L(P )
∂P 0

=
∑

ε,s=±
ϕε†

s (εp)ϕε
s(εp) (2π)3 δ3(P − εp), (6.3.11)

with ϕε†
s (εp) = ϕ̄ε

s(εp)γ
0. The action (divided by h̄ with h̄ = 1 here) is in-

terpreted as the occupation number for electrons or positrons. Including an
average over phase space, by integrating over V d3P /(2π)3, the occupation
numbers for electrons and positrons are identified as

nε
s(p) = V ϕε†

s (εp)ϕε
s(εp), (6.3.12)

The form (6.3.12) may be rewritten

n+
s (p) =

1
2ε
u†s(p)us(p), n−s (p) =

1
2ε
v†s(p)vs(p), (6.3.13)

where (6.2.14) is used.
An alternative derivation of the occupation numbers is as follows. First, the

average (over space-time) energy in the particles is calculated by averaging the
00-component of the energy momentum tensor T µν(x). This is then identified
with the energy found by multiplying the occupation numbers by the energy
per particle and integrating over momentum space. This leads to the identity

1
TV

∫
d4x |T 00(x)| =

∫
d3p

(2π)3
∑
ε,s

ε nε
s(p), (6.3.14)

The remaining steps in the derivation of (6.3.12) from (6.3.14) are analogous
to those in the derivation of the expression (6.3.9) for L(P ) from (6.3.8).

The modulus sign in (6.3.14) is not needed for electrons, but for positrons
T 00(x) is negative. Without the modulus sign, (6.3.14) would correspond to
the lepton number, which is negative for anti-leptons.

6.3.4 Inclusion of an electromagnetic field

An electromagnetic field, described by its 4-potential Aµ(x), is included in
relativistic quantum mechanics by replacing p̂µ by p̂µ − qAµ(x). This is some-
times referred to as the minimal coupling replacement. With p̂µ = i∂µ, this
minimal coupling assumption corresponds to the replacement

∂µ → Dµ = ∂µ + iqAµ(x). (6.3.15)

The argument leading to (6.3.15) involves the following steps. First, the
electromagnetic field is included in the Lagrangian for a single particle, as in
(3.1.2), viz. L(x,v, t) = −m(1−v2)1/2−qφ(x, t)+qv ·A(t,x). It then follows
that the generalized or canonical momentum is
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p =
∂L

∂v
= γmv + qA, (6.3.16)

which is not equal to the kinetic momentum, γmv. The Hamiltonian is
H(x,p, t) = [m2 + (p− qA)2]1/2 + qΦ. On interpreting H and p as operators
in quantum mechanics, they are replaced by i∂/∂t and −i∂/∂x, respectively,
corresponding to p̂µ being replaced by i∂µ. On starting from the Hamilto-
nian with no electromagnetic field, one adds −qAµ(x) to p̂µ to obtain the
Hamiltonian in the presence of an electromagnetic field. This corresponds to
i∂µ → i∂µ − qAµ(x). Note that it is the generalized or canonical momentum,
and not the kinetic momentum, that is replaced by the operator −i∂/∂x.

6.3.5 Magnetic moment of the electron

For an electron, with q = −e, (6.3.15) becomes ∂µ → Dµ = ∂µ − ieAµ(x).
The minimal coupling assumption implies the following replacement for the
Dirac Hamiltonian (6.1.16):

Ĥ → α ·
(
p̂ + eA

)
+ βm− eΦ. (6.3.17)

On including an electromagnetic field in the Dirac equation (6.1.10), the result
may be rewritten by introducing the ansatz

Ψ(x) = [i/∂ + e/A(x) +m]χ(x). (6.3.18)

Then the Dirac equation implies the second order differential equation[
DµDµ −m2 − 2eiσµνFµν(x)

]
χ(x) = 0, (6.3.19)

with the spin 4-tensor, σµν , given by (6.1.24).
In the absence of the electromagnetic field, (6.3.19) corresponds to the

Klein-Gordon equation, but including the electromagnetic field in the Klein-
Gordon equation does not reproduce (6.3.19). Applying the minimal coupling
assumption to the Klein-Gordon equation leads to (6.3.19) without the term
−2eiσµνFµν(x). It follows that the term −2eiσµνFµν(x) is associated with
the spin of the particle. In terms of the electric and magnetic fields one has

−2ie σµνFµν = ieα · E(x) − eσ · B(x). (6.3.20)

The term −eσ · B in (6.3.20) reproduces the familiar term involving eσ · B
for an electron in a magnetic field in the Schrödinger-Pauli theory, where the
term eσ · B(x) is attributed to the magnetic moment of the electron. The
natural appearance of this term was a major success for Dirac’s theory.

6.3.6 Interaction between Dirac and EM fields

The Dirac 4-current is identified by including an electromagnetic field in the
Lagrangian density (6.3.5) using the minimal coupling assumption (6.3.15).
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The complex conjugate of (6.3.15) is used in replacing the term ∂µΨ(x) in
(6.3.5) by [∂µ + ieAµ(x)]Ψ (x). The interaction Lagrangian,

LI(x) = −Jµ(x)Aµ(x), Jµ(x) = −eΨ(x) γµ Ψ(x), (6.3.21)

is identified from the additional term introduced term in this replacement.
The interaction Hamiltonian is equal to minus the interaction Lagrangian.

6.3.7 Interaction between Klein-Gordon and EM fields

On making the minimal coupling replacement in the Klein-Gordon Lagrangian,
(6.3.5), one obtains

L(x) = [∂µΨ
∗(x) − iqAµ(x)Ψ∗(x)] [∂µΨ(x) + iqAµ(x)Ψ(x)] −m2Ψ∗(x)Ψ(x).

(6.3.22)
The term linear in Aµ(x) in (6.3.22) implies that the 4-current is given by

Jµ(x) = iq[Ψ∗(∂µΨ) − (∂µΨ∗)Ψ ]. (6.3.23)

The charge continuity relation, ∂µJ
µ(x) = 0, is then implied by the Klein-

Gordon equation.
The interaction Lagrangian is identified from the terms in (6.3.22) that

involve the 4-potential:

LI(x) = −iqAµ(x)[Ψ∗(x)∂µΨ(x) − Ψ(x)∂µΨ
∗(x)] + q2A2(x)Ψ∗(x)Ψ(x).

(6.3.24)
There are two interaction terms, one that is linear in A(x) and one that is
quadratic in A(x). This leads to a qualitative difference compared with the
Dirac case, where there is only one type of interaction term. The linear term
is a counterpart of the electron-photon vertex in QED, but the quadratic term
has no counterpart in QED.
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6.4 Second quantization

Quantization of a field involves regarding the field as a collection of oscillators,
and quantizing each oscillator as for a simple harmonic oscillator (SHO). The
raising and lowering operators in the SHO problem are interpreted as creation
and annihilation operators for the quanta of the field. The vacuum is defined
by analogy with the ground state of the SHO, as the state that gives zero
when operated on by any annihilation operator.

6.4.1 Harmonic oscillator

The formalism of the SHO that is used in field quantization may be sum-
marized as follows. The Hamiltonian operator for an harmonic oscillator is

Ĥ =
p̂2

2m
+
kq̂2

2
, (6.4.1)

wherem and k are constants, and where q̂, p̂ satisfy the commutation relations
(6.1.3). The natural frequency of the oscillator is ω = (k/m)1/2. The operators

â =
ωq̂ + ip̂√

2ω
, â† =

ωq̂ − ip̂√
2ω

, (6.4.2)

act as lowering and raising operators, respectively. They satisfy the commu-
tation relations

[â, â] = 0, [â†, â†] = 0, [â, â†] = 1. (6.4.3)

The Hamiltonian (6.4.1) may be written Ĥ = ω(â†â + 1
2 ), and then (6.4.3)

imply
[â, Ĥ] = ωâ, [â†, Ĥ ] = −ωâ†. (6.4.4)

These relations allow one to determined the energy eigenvalues as follows.
Consider a particular eigenstate, |E〉, with energy E, that is, Ĥ|E〉 =

E |E〉. Applying the operators (6.4.4) to this state implies that the state â|E〉
is an eigenstate with energy E − ω, and the state â†|E〉 is an eigenstate with
energy E + ω. Thus, â and â† may be interpreted as lowering and raising
operators, respectively. The Hamiltonian (6.4.1) is a sum of squares, and its
eigenvalues cannot be negative: there must exist a ground state, with energy
E0 ≥ 0, such that it gives zero when operated on by the annihilation operator,
â|E0〉 = 0. Operating on this state once with the raising operator generates
a state with energy E0 + ω, and repeating the operation n times generates a
state with energy E0 + nω. Moreover, with Ĥ = ω(â†â + 1

2 ), the condition
â|E〉 implies Ĥ |E0〉 = 1

2ω |E0〉, and E0 = 1
2ω. The quantum states of the SHO

may be labeled by a quantum number n = 0, 1, . . . such that the nth state,
denoted |n〉, has an energy

En = (n+ 1
2 )ω. (6.4.5)
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On normalizing the states, one has

â |n〉 =
√
n |n− 1〉, â† |n〉 =

√
n+ 1 |n+ 1〉. (6.4.6)

Operating n times on | 0〉 with the raising operator gives

|n〉 =
1√
n!

(â†)n| 0〉. (6.4.7)

It is convenient to define a number operator by

n̂ = â†â, n̂ |n〉 = n |n〉, (6.4.8)

so that the Hamiltonian is
Ĥ = ω(n̂+ 1

2 ). (6.4.9)

6.4.2 Quantization of fields

Quantization of a wave field involves regarding the waves as a collection of
oscillators and quantizing the oscillators. The waves are described in terms
of Fourier transformed quantities, which is equivalent to expanding in plane
waves. There is a continuum of waves as a function of wave vector, k, with the
frequency of the waves determined by the dispersion relation, ω = ωM (k) for
a wave in the modeM . In introducing the concept of quantization it is helpful
to make the volume finite, so that the continuum of waves as a function of k
is replaced by a discrete set of eigenmodes. Consider a field confined to a box
with sides of length Lx, Ly, Lz and volume V = LxLyLz. The eigenmodes have
wavenumbers kx = nx2π/Lx, ky = ny2π/Ly, kz = nz2π/Lz, where nx, ny, nz

are integers. It is convenient to describe each eigenmode of the field by a set
of quantum numbers {q}, which includes nx, ny, nz and the mode M . For a
wave field, energy of a wave is ωM (k), and for a particle field the energy of a
quantum is εq.

One quantizes such a field by regarding each eigenmode as an oscillator de-
scribed by creation and annihilation operators, â†q and âq, respectively. These
are assumed to satisfy the SHO commutation relations (6.4.3) in the form

[âq, âq′ ] = 0, [â†q, â
†
q′ ] = 0, [âq, â

†
q′ ] = δqq′ . (6.4.10)

The commutation relations (6.4.10) are satisfactory for wave fields, and for
other neutral boson fields (which correspond to a particles that is its own
antiparticle). It is conventional to use â†, â for particles, b̂†, b̂ for antiparticles
and ĉ†, ĉ for wave fields. For a boson field, (6.4.10) apply separately to the
particle operators, â†, â, and to the antiparticle operators b̂†, b̂.

The wave amplitude, or the wavefunction for a particle, is separated into
positive and negative energy parts. For a wave field the positive-frequency part
is proportional to exp[−iωqt], and for a particle field, the negative-energy part
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is proportional to exp[iεqt]. The negative-frequency and negative-energy parts
are the complex conjugates and adjoints of the positive-frequency and positive-
energy parts, respectively. For a wave field, the second quantization procedure
is to replace the wave amplitude by an operator, with the positive-frequency
part being multiplied by the annihilation operator, and the negative-frequency
part being multiplied by the creation operator. For particle fields, particles
and antiparticles are distinct, described by the quantum number ε = ±1,
respectively. The positive-energy part of the wavefunction is multiplied by
the annihilation operator for the particle, and the negative-energy part of the
wavefunction is multiplied by the creation operator for the antiparticle. For the
adjoint wavefunction, the positive-energy part is multiplied by the annihilation
operator for the antiparticle, and the negative-energy part is multiplied by the
creation operator for the particle, respectively.

For a particle field, with wavefunctions of the generic form (6.2.1) this
procedure leads to the wavefunction and its adjoint being written as the op-
erators

Ψ̂(x) =
∑

q

[
âq Ψ

+
q (x) e−iεqt + b̂†q Ψ

−
q (x)eiεqt

]
, (6.4.11)

Ψ̂ †(x) =
∑

q

[
â†q Ψ

+†
q (x) eiεqt + b̂q Ψ−†

q (x)e−iεqt
]
, (6.4.12)

where the sum is over the set of quantum numbers q. For free particles the
sum over states is interpreted in terms of (6.2.2) and the orthogonality condi-
tion in terms of (6.2.3). The wavefunctions in (6.4.12) are replaced by plane
wavefunctions according to

Ψ ε
q(x) exp[−iεεqt] → ϕs(εp) exp[−iε(εt− p · x)],

Ψ ε†
q (x) exp[iεεqt] → ϕ†

s(εp) exp[iε(εt− p · x)]. (6.4.13)

For a wave field in the mode M , the classical amplitude is replaced by its
second quantized form

Âµ
M (x) = V

∫
d3k

(2π)3
aM (k)

[
ĉM (k) eµM (k) e−ikM x + ĉ†M (k) e∗µ

M eikM x
]
,

(6.4.14)
with aM (k) = (µ0RM (k)/ωMV )1/2. The Fourier transform of (6.4.14) gives

Âµ
M (k) = V aM (k)

{
ĉM (k) eµM (k) 2πδ[ω − ωM (k)]

+ĉ†M (k) e∗µ
M 2πδ[ω + ωM (k)]

}
. (6.4.15)

6.4.3 Anticommutation relations for fermion fields

The commutation relations (6.4.10) are satisfactory for boson fields, but a
problem arises with fermion fields: the Pauli exclusion principle is that there
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can be no more than one fermion in a given state. This condition is expressed
formally by

n̂2
q = n̂q, (6.4.16)

so that n̂q has only the eigenvalues nq = 0, 1. In order to satisfy this condition
it is postulated that fermion operators anticommute rather than commute.
The anticommutator of two operators Â and B̂ is

[Â, B̂]+ = ÂB̂ + B̂Â. (6.4.17)

Thus it is postulated that the relations (6.4.10) are replaced by

[âq, âq′ ]+ = 0, [â†q, â
†
q′ ]+ = 0, [âq, â

†
q′ ]+ = δqq′ , (6.4.18)

for fermion fields. One then has

(âq)2 = 0, (â†q)
2 = 0, (6.4.19)

which imply (n̂q)2 = â†qâqâ
†
qâq = −(â†q)

2(âq)2 + â†qâq = n̂q, as required.

6.4.4 Quantization of fermion fields

For a free field for spin 1
2 particles, the wavefunction (6.2.4) with (6.2.10) and

its Dirac adjoint are replaced by the second quantized forms

Ψ̂(x) = V
∑
ε,s

∫
d3p

(2π)3
ϕε

s(εp) â
ε
s(εp) e

−iεpx,

Ψ̂(x) = V
∑
ε,s

∫
d3p

(2π)3
ϕ̄ε

s(εp)â
†ε
s (εp) eiεpx, (6.4.20)

respectively. The operator â+s (p) → âs(p) is interpreted as the annihilation
operator for electrons, and â−s (−p) → b̂†s(p) is interpreted as the creation
operator for positrons, with â†+s (p) → â†s(p) and â†−s (−p) → b̂s(p). Thus
(6.4.20) is equivalent to

Ψ̂(x) = V
∑

s

∫
d3p

(2π)3
1√
2εV

[
âs(p)us(p) e−ipx + b̂†s(p) vs(p) eipx

]
,

Ψ̂(x) = V
∑

s

∫
d3p

(2π)3
1√
2εV

[
â†s(p) ūs(p) eipx + b̂s(p) v̄s(p) e−ipx

]
, (6.4.21)

where the electron and positron parts are shown explicitly.
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6.4.5 Normal ordering

Dirac suggested that in vacuo all the negative-energy states are filled, forming
a ‘Dirac sea’. A major success of this hypothesis was the prediction of the
positron as a hole in the Dirac sea. However, there are obvious difficulties
with the concept of a Dirac sea: it implies that the vacuum has an infinite
charge density and an infinite energy, it involves an asymmetry under the
interchange of particles and antiparticles, and it relies on the Pauli exclusion
principle, and so does not apply to bosons. In quantum field theory, these
difficulties are avoided by redefining the vacuum to be the state that gives
zero when operated on by any annihilation operator. The number operator
for a second quantized field is n̂q = â†qâq, and this implies that the occupation
number for all states is zero for the vacuum, as required.

There is ambiguity in the order that the creation and annihilation oper-
ators appear in quantities that are bilinear in the field and its adjoint. The
order in which one writes the wavefunctions is important when second quan-
tizing, because the quantized field and its adjoint do not commute. This is
particularly obvious for fermion fields for which the operators satisfy anticom-
mutation relations, so that there is a sign difference on interchanging the field
and its adjoint. This ambiguity is removed by imposing the prescription that
the operators in any bilinear combination be written such that all annihilation
operators are to the right of all creation operators. The operators are then
said to be in normal order. Normal order is denoted by colons on either side
of the product of operators.

The current (6.3.21) for the Dirac field is bilinear in the wavefunction and
its adjoint. The generalization to an operator requires that this product be
written in normal order:

Ĵµ(x) = q : Ψ̂(x)γµΨ̂(x) : . (6.4.22)

Before imposing normal order, the product in (6.4.22) contains four combina-
tions of pairs of operators: â†s′(p′) âs(p), b̂s′(p′) âs(p), â†s′(p′) b̂†s(p),
b̂s′(p′) b̂†s(p). The first of these is in normal order, and the middle two are
unaffected by imposing normal order. The final combination is not in normal
order, and imposing normal order requires that it be replaced by b̂†s(p) b̂s′(p′)
for a boson field and by −b̂†s(p) b̂s′(p′) for a fermion field.
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6.5 Propagators

The electron propagator is constructed in this section, first as a Green’s func-
tion by solving the inhomogeneous Dirac equation for free particles with a
δ-function source term, and second as a vacuum expectation value. There are
poles in the propagator at p0 = ±εq, and in the Feynman form of the propa-
gator one integrates around these poles such that an antiparticle corresponds
to a particle propagating backwards in time.

6.5.1 Solution of inhomogeneous wave equation

One definition of a particle propagator is as the Green’s function correspond-
ing to the field equation for the particle. The Green’s function solves the inho-
mogeneous wave equation, which contains a source term, S(x) say, on the right
hand side. The inhomogeneous Klein-Gordon equation is (∂µ∂µ +m2)Ψ(x) =
S(x), and the inhomogeneous Dirac equation is (i/∂ − m)Ψ(x) = S(x). One
may write

S(x) =
∫
d4x′ δ4(x − x′)S(x′), (6.5.1)

and introduce the Green’s function G(x, x′) such that the solution is

Ψ(x) =
∫
d4x′G(x − x′)S(x′). (6.5.2)

This requires that the Green’s function satisfy

(∂µ∂µ +m2)G(x, x′) = δ4(x − x′), (6.5.3)

for the Klein-Gordon field, and

(i/∂ −m)G(x, x′) = δ4(x− x′), (6.5.4)

for the Dirac field. One is free to separate G(x, x′) into a function G(x − x′)
plus an arbitrary solution of the homogeneous wave equation.

The Fourier transform G(p) of G(x− x′) is the propagator in momentum
space. For the Klein-Gordon equation, the Fourier transform of (6.5.3) gives

(p2 −m2)G(p) = −1, G(p) = − 1
p2 −m2

. (6.5.5)

For the Dirac equation, the Fourier transform of (6.5.5) gives

(/p−m)G(p) = 1, G(p) =
/p+m
p2 −m2

. (6.5.6)

The propagator for bosons of spin 1 is

Ḡµν(P ) = −
(
gµν − P

µ P ν

m2

)
1

P 2 −m2
. (6.5.7)
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Fig. 6.1. The Feynman contour in the complex p0-plane is along the p0-axis below
the pole at p0 = −ε, above the pole at p0 = ε and closing in the upper half plane.

6.5.2 Feynman contour

The denominators of the propagators (6.5.5) and (6.5.6) have poles at p2 −
m2 = 0. The two solutions of p2 −m2 = 0 give poles at p0 = ±ε which corre-
spond to particles and antiparticles, respectively. The question arises as to how
one is to integrate around these poles when inverting the Fourier transform.
The path for the p0-integral, in the inversion of the Fourier transform, is along
the real p0-axis, and one must decide what to do at the poles. The Cauchy
integral theorem implies that the actual shape of the contour is irrelevant; the
value of the integral depends on whether or not the contour encloses the pole.
There are two option at any given pole: either (a) the contour deviates above
the pole, or (b) the contour deviates below the pole. Option (a) corresponds to
the causal condition and is equivalent to giving p0 an infinitesimal imaginary
part, +i0, so that the pole is infinitesimally below the real axis. Option (b)
corresponds to a time-reversed version of this condition, and is equivalent to
giving p0 an infinitesimal imaginary part, −i0.

Feynman proposed that antiparticles be interpreted as positive energy par-
ticles propagating backward in time, rather than as negative energy particles
propagating forward in time. The poles at p0 = ±ε in (6.5.6) correspond to a
particle and an antiparticle, respectively. The Feynman propagator describes
particles propagating forward in time and antiparticles propagating backwards
in time. This is achieved by adding +i0 for the pole at p0 = ε and −i0 for the
pole at p0 = −ε. Thus one writes

1
p2 −m2

→ 1
2ε

[
1

p0 − ε+ i0
− 1
p0 + ε− i0

]
=

1
p2 −m2 + i0

. (6.5.8)

This contour is illustrated in Fig. 6.1.
The singular terms, implied by the terms ±i0 and the Plemelj formula

(1.3.20), viz.
1

ω − ω0 + i0
= ℘ 1

ω − ω0
− iπ δ(ω − ω0),

in (6.5.8) give the resonant part of the propagator. The resonant part is as-
sociated with the creation or annihilation of a real particle.
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6.5.3 Chronological operator

The propagator G(x, x′) describes the propagation of a disturbance in the
Klein-Gorodon or Dirac field between x′ and x. For the Feynman propagator,
these events are interpreted as the creation at x′ of a particle that propagates
to x where it is annihilated, or creation at x of an antiparticle which propagates
backward in time to x′ where it is annihilated. These apply for t > t′ and
t < t′, respectively.

The Feynman propagator can be expressed as a vacuum expectation value
of a creation-annihilation pair of operators. To see this, for spin-1

2 , consider the

product of a second quantized Dirac wavefunction and its adjoint, Ψ̂(x) Ψ̂ (x′).
This product contains four operators, âq, b̂†q acting at x and â†q′ , b̂q′ acting
at x′. The bilinear combination involves four terms, each the product of two
operators. One of these terms involves two annihilation operators, âq b̂q′ , and
another involves two creation operators, b̂†qâ

†
q′ . The vacuum expectation values

of these is zero, and it is also zero if the order of the operators is reversed. The
other terms contain operators âqâ

†
q′ , which has a nonzero vacuum expectation

value. For t > t′, the pair of operators âqâ
†
q′ corresponds to the required cre-

ation of an electron at x′ and annihilation of the electron at x at a later time.
For t′ > t, if the pair of operators b̂†q b̂q′ were written in the opposite order,
−b̂q′ b̂†q, it would have a nonzero vacuum expectation value that would give
the required creation of a positron at x and annihilation at x′. It follows that
〈 0 |Ψ̂(x)Ψ̂ (x′)| 0 〉 has a nonzero contribution corresponding to creation of an
electron at x′ and annihilation of the electron at x, and that 〈 0 |Ψ̂(x′) Ψ̂(x)| 0 〉
has a nonzero contribution corresponding to creation of a positron at x and
annihilation of the positron at x′. The Feynman propagator requires the for-
mer for t > t′, so that the electron propagates forward in time, and the latter
for t′ > t, so that the positron propagates backward in time.

To achieve this desired result, one introduces the chronological operator
T̂ , which requires that the field operators be written in this order. Specifically,
one requires

T̂ {Ψ̂(x)Ψ̂ (x′)} =

{
Ψ̂(x)Ψ̂ (x′), for t > t′,

−Ψ̂(x′)Ψ̂(x), for t < t′,
(6.5.9)

for fermions. The vacuum expectation value of the time ordered product is
nonzero only due to 〈 0 |âqâ

†
q′ | 0 〉 = δqq′ for t > t′ and due to 〈 0 |b̂q′ b̂†q| 0 〉 = δqq′

for t < t′.

6.5.4 Vacuum expectation value

The chronologically ordered product (6.5.9) may be rewritten using the step
functions H(t− t′) and H(t′− t) to isolate the terms that apply for t > t′ and
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t < t′, respectively. For the generic wavefunctions of the form (6.4.11) and
(6.4.12), the vacuum expectation value of this product becomes

〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉

=
∑
qq′

{
H(t− t′)

[
〈 0 |âqâ

†
q′ | 0 〉Ψ+

q (x)Ψ+
q′(x′) e−iεqt+iεq′ t

′]

−H(t′ − t)
[
〈 0 |b̂q′ b̂†q| 0 〉Ψ−

q (x)Ψ−
q′(x′) eiεqt−iεq′ t

′]}
. (6.5.10)

Using the relations

〈 0 |âqâ
†
q′ | 0 〉 = δqq′ , 〈 0 |b̂q′ b̂†q| 0 〉 = δqq′ , (6.5.11)

(6.5.10) reduces to

〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉 =
∑

q

{
H(t− t′)Ψ+

q (x)Ψ+
q (x′) e−iεq(t−t′)

−H(t′ − t)Ψ−
q (x)Ψ−

q (x′) eiεq(t−t′)
}
. (6.5.12)

Writing the step functions in (6.5.12) in terms of their Fourier transforms,
using (1.3.14), gives

H(t− t′) =
∫
dω

2π
i

ω + i0
e−iω(t−t′), H(t′ − t) =

∫
dω

2π
−i
ω − i0 e

−iω(t−t′).

(6.5.13)
Then (6.5.12) becomes

〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉 =
∑

q

∫
dω

2π
e−iω(t−t′)

×
[

i

ω + i0
Ψ+

q (x)Ψ+
q (x′) e−iεq(t−t′) − −i

ω − i0 Ψ
−
q (x)Ψ−

q (x′) eiεq(t−t′)
]
.

(6.5.14)

By replacing ω by E ± εq, the two terms may be written in the same form
apart from a sign ε:

〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉 =
∑
ε,q

∫
dE

2π
e−iE(t−t′) iΨ

ε
q (x)Ψ ε

q(x
′)

E − ε(εq − i0)
. (6.5.15)

The two forms (6.5.14) and (6.5.15) apply to arbitrary wavefunctions, includ-
ing plane wavefunctions.

6.5.5 Electron propagator as a vacuum expectation value

Consider the form of (6.5.14) for plane wavefunctions: εq → ε = (m2 + p2)1/2

and with the sum over q is replaced according to (6.2.2). The integral over E
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is rewritten as an integral over p0 such that all the time dependences are of
the form exp[−ip0(t− t′)]. In this way (6.5.14) becomes

〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉 =
∫

d3p

(2π)3

∫
dp0

2π
i

2ε
e−ip0(t−t′)

×
[

/p+m
p0 − ε+ i0

eip·(x−x′) +
/p−m

p0 + ε− i0 e
−ip·(x−x′)

]
. (6.5.16)

The final step is to write the integral over d3p in terms of one over d3P ,
with P = εp. Comparison of (6.5.16) and the propagator (6.5.6) leads to the
identification

G(x− x′) = −i〈 0 |T̂ {Ψ̂(x)Ψ̂ (x′)}| 0 〉. (6.5.17)

This establishes the interpretation of the Feynman propagator (6.5.8) in terms
of a vacuum expectation value.

6.5.6 Contractions

In the evaluation of the S-matrix (§6.6) it is necessary to re-express a chrono-
logical product of operators in normal order. The chronological product of
ψ̂(x) and its adjoint is written in normal order by using the anticommutation
or commutation relations. Each use of such a relation leads to a non-operator
term, called a c-number. One has

T̂ {ψ̂(x)ψ̂†(x′)} = : ψ̂(x)ψ̂†(x′) : +ψ̂(x)ψ̂†(x′), (6.5.18)

where ψ̂(x)ψ̂†(x′) is the c-number, and is called the contraction. The value
of this c-number is determined by taking the vacuum expectation value, and
noting that this is zero for any normally ordered set of operators. Thus (6.5.18)
implies

ψ̂(x)ψ̂†(x′) = 〈 0 |T̂ {ψ̂(x)ψ̂†(x′)}| 0 〉. (6.5.19)

The extension of (6.5.18) with (6.5.19) to an arbitrary number of operators
is Wick’s theorem. The implication is that one is to sum over all contractions:
if there are n pairs of particle (including photon) fields, one is to include
terms with zero contractions, all terms with one contraction, all terms with
two contractions, and so one. For fermion fields, one needs to take account
of the changes in sign due to anticommutation relations in rearranging the
operators so that they are in the sequence

Ψ̂(x)Ψ̂ (x′) = iG(x− x′). (6.5.20)

6.5.7 Boson propagator

For bosons one has
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Ψ̂(x)Ψ̂∗(x′) = −iG(x, x′) = −i
∑
εq

Ψ ε
q (x)Ψ∗ε

q (x′)
∫
dE

2π
e−iE(t−t′) Gε

q(E),

Gε
q(E) =

1
E − ε(εq − i0)

. (6.5.21)

The momentum-space representation for free particles gives

Ψ̂(x)Ψ̂∗(x′) = −i
∫
d4P

(2π)4
e−iP (x−x′)G(P ), (6.5.22)

with G(P ) given by (6.5.5).

6.5.8 Photon propagator as a vacuum expectation value

For a wave field, the vacuum expectation value is calculated in an analogous
manner to that for electrons. One finds

〈 0 |T̂ {Âµ
M (x)Â†ν

M (x′)}| 0 〉 = µ0

∫
d3k

(2π)3
RM

ωM

×
[
eµMe

∗ν
M e

−ikM (x−x′) + e∗µ
M e

ν
M e

ikM (x−x′)
]
, (6.5.23)

where the k dependence of RM , ωM , eµM is implicit. The result (6.5.23) cor-
responds to the resonant part of the photon propagator (2.1.12) for waves in
the modeM , where one uses (2.3.10), (2.3.11) in the evaluation. The resonant
part of the photon propagator is also its antihermitian part, and it is given
by

DAµν
M (k) = i

∫
d4(x− x′) eik(x−x′) 〈 0 |T̂ {Âµ

M (x)Â†ν
M (x′)}| 0 〉, (6.5.24)

where only the contribution from the mode M is retained.
The photon propagator may also be constructed as a vacuum expectation

value. One has
Âµ(x)Â†ν(x′) = −iDµν(x − x′), (6.5.25)

where Dµν(x) is the inverse Fourier transform of the propagator Dµν(k).
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6.6 Scattering matrix (S-matrix)

There is only one interaction term in QED, and is linear in the electromagnetic
field. Other interaction terms are needed to include wave-wave interaction and
when bosons are involved. The way these interaction terms are included is
described in this section.

6.6.1 Interaction picture

The S-matrix is derived using the interaction picture. The Hamiltonian is
separated into parts corresponding to the free fields, and an interaction term
by writing

Ĥ(t) = Ĥ0 + ĤI(t), (6.6.1)

where Ĥ0 describes the background system and ĤI(t) describes the interac-
tion. In the interaction picture the state functions are assumed to evolve due
to ĤI(t) and the operators are assumed to evolve due to Ĥ0.

For emphasis, let the kets, bras and operators in the interaction picture
be denoted by subscript I. The equations that describe the time evolution in
this picture are

i
d

dt
| t 〉I = ĤI(t)| t 〉I (6.6.2)

for an arbitrary state | t 〉I and

i
d

dt
K̂I(t) = [K̂I(t), Ĥ0] (6.6.3)

for an arbitrary operator K̂(t). The subscript I is omitted in the following, but
it remains implicit that the wavefunctions and operators are in the interaction
picture.

The S-matrix is defined as the matrix elements of the operator Ŝ(t, t0) that
transforms a state at time t0 into a state at time t. This definition corresponds
to

| t 〉 = Ŝ(t, t0) |t0〉. (6.6.4)

In practice one sets t0 = −∞ and t = ∞, and regards these as initial and
final states. (Formally one should turn the interaction term on and off adi-
abatically.) The matrix element between an initial (i) and a final (f) state
is

Sfi = 〈 f | Ŝ | i 〉. (6.6.5)

The term ‘S-matrix’ refers to the matrix elements (6.6.5).
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6.6.2 Evolution of Ŝ

On substituting (6.6.4) into (6.6.2) one finds that the operator Ŝ evolves
according to

i
d

dt
Ŝ(t, t0) = ĤI(t) Ŝ(t, t0). (6.6.6)

The integral equation corresponding to the differential equation (6.6.6) is

Ŝ(t, t0) = 1̂ − i
∫ t

t0

dt′ ĤI(t′)Ŝ(t′, t0), (6.6.7)

where the boundary condition Ŝ(t0, t0) = 1̂ is taken into account.
The interaction is regarded as a perturbation, and one expands in powers

of ĤI. This gives

Ŝ(t, t0) = 1̂− i
∫ t

t0

dt′ ĤI(t′)+ (−i)2
∫ t

t0

dt′
∫ t′

t0

dt′′ ĤI(t′)ĤI(t′′)+ · · · . (6.6.8)

On setting t0 = −∞ and t = ∞, the second order term may be rewritten
using the chronological operator:∫ ∞

−∞
dt′
∫ t′

−∞
dt′′ ĤI(t′)ĤI(t′′) =

1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T̂ {ĤI(t1)ĤI(t2)}.

The same trick may be applied to simplify the form of the integrals for all
higher order terms. This leads to the expansion

Ŝ(∞,−∞) =
∞∑

n=0

Ŝ(n), (6.6.9)

with Ŝ(0) = 1̂ corresponding to no interaction, and with

Ŝ(1) = −i
∫ ∞

−∞
dt ĤI(t),

Ŝ(2) =
(−i)2

2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T̂ {ĤI(t1)ĤI(t2)},

...

Ŝ(n) =
(−i)n

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 . . .

∫ ∞

−∞
dtn T̂ {ĤI(t1)ĤI(t2) . . . ĤI(tn)}.

(6.6.10)

6.6.3 Interaction Hamiltonian in QED

In QED the interaction Lagrangian density is given by (6.3.21). With the
current written as an operator in normal order, as in (6.4.22), the interaction
Lagrangian density becomes
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LI(x) = e : Ψ̂(x)/̂A(x)Ψ̂ (x) : . (6.6.11)

The interaction Hamiltonian density is equal to minus the interaction La-
grangian density:

ĤI(t) =
∫
d3x ĤI(x), ĤI(x) = −e : Ψ̂(x)/̂A(x)Ψ̂ (x) : . (6.6.12)

Thus in QED the nth order term in (6.6.9) becomes

Ŝ(n) =
(ie)n

n!

∫
d4x1

∫
d4x2 . . .

∫
d4xn T̂ {: Ψ̂(x1)/̂A(x1)Ψ̂ (x1) :

× : Ψ̂(x2)/̂A(x2)Ψ̂ (x2) : . . . : Ψ̂(xn)/̂A(xn)Ψ̂(x)n :}. (6.6.13)

The chronologically ordered product of operators in the integrand in (6.6.13)
is re-expressed in normal order using Wick’s theorem.

6.6.4 Initial and final states

To evaluate the matrix element Sfi = 〈 f |Ŝ(∞,−∞)| i 〉 one needs to construct
the initial state, | i 〉, and the final state, 〈 f |. A given initial state, | i 〉, is
constructed from the vacuum by using the appropriate creation operators, and
a given final state, 〈 f |, is similarly constructed using annihilation operators.
Thus the initial and final states may be written

| i 〉 =
(∏

i

â†b̂†ĉ†
)
| 0 〉, 〈 f | = 〈 0 |

(∏
f

âb̂ĉ
)
, (6.6.14)

where the products are over all particles, antiparticles and wave quanta in the
initial and final states, respectively. The S-matrix element (6.6.5),

Sfi = 〈 f | Ŝ | i 〉, (6.6.15)

gives a nonzero result only if it reduces to a c-number. This requires that
the specific set of annihilation operators that appears in Ŝ has a one-to-one
correspondence with the set of creation operators in | i 〉, and the set of creation
operators that appears in Ŝ has a one-to-one correspondence with the set of
annihilation operators in 〈 f |. The probability of a transition from the initial
to the final state is equal to |Sfi|2, with Sfi identified as the coefficient of the
relevant product of operators in the expansion of Ŝ.

6.6.5 Scattering amplitudes Tf i and Mf i

For free particles, the final 4-momentum pf is equal to the initial 4-momentum
pi. This is built into the scattering matrix by writing

Sfi = δfi + i(2π)4 δ4(pf − pi)Tfi, (6.6.16)
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which defines the scattering amplitude Tfi. The probability of a transition
from the initial to the final state is

pi→f = V T (2π)4 δ4(pf − pi) |Tfi|2. (6.6.17)

The probability per unit time of a transition is identified as wi→f = pi→f/T ,
so that (6.6.17) implies

wi→f = V (2π)4 δ4(pf − pi) |Tfi|2. (6.6.18)

It is often convenient to define another scattering amplitude Mfi that in-
cludes all the normalization factors for the initial and final particle and wave
quantum states. This is written schematically as

Tfi =
∏
aM

1√
2εV

Mfi, (6.6.19)

where the product is over all particle, antiparticles and wave quanta in the
initial and final states, and with, cf. (2.4.10), aM = (µ0RM/ωMV )1/2.

6.6.6 Additional interaction terms

In the expansion (6.6.9) of the S-matrix it is assumed that there is only
order interaction term, and that it is of first order (in a relevant expansion
parameter). In order to include the nonlinear responses of the medium in QPD,
and the second order (in the electromagnetic field) in the case of the Klein-
Gordon field, one needs to modify the expansion. Suppose that the interaction
term is of the generic form

ĤI(x) =
∑
n=1

Ĥ(n)
I (x), Ĥn

I (x) = Ĥ(n)a
I (x) + Ĥ(n)b

I (x), (6.6.20)

where (n) denotes the order in the expansion in the coupling constant, and
a, b denote different kinds of contributions at each order. On inserting (6.6.20)
into (6.6.9) one collects terms of different order. Including only two types of
contribution, denoted a, b, the first order terms are

Ŝ(1) = −i
∫
d4x [Ĥ(1)a

I (x) + Ĥ(1)b
I (x)], (6.6.21)

and the second order terms are

Ŝ(2) =
(−i)2

2

∫
d4x1

∫
d4x2

[
T̂ {Ĥ(1)a

I (x1) Ĥ(1)a
I (x2)}

+2T̂ {Ĥ(1)a
I (x1) Ĥ(1)b

I (x2)} + T̂ {Ĥ(1)b
I (x1) Ĥ(1)b

I (x2)
]

−i
∫
d4x [Ĥ(2)a

I (x) + Ĥ(2)b
I (x)]. (6.6.22)

The extension to higher order terms is obvious.
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6.6.7 Nonlinear responses in QPD

In the case of QPD, there are contributions of two kinds: the conventional
first-order interaction term in QED, and nonlinear wave-wave terms. The
momentum-space interaction Lagrangians for the wave-wave interactions are
written down in in (3.2.27) and (3.2.28), respectively. It is convenient to relabel
these as three-wave (3w) and four-wave (4w) interactions, respectively, and
write them in terms of the interaction Hamiltonian, which differs from the
interaction Lagrangian by a sign. For the 3w-case the coordinate-space form
is∫

d4xH3w(x) =
1
3

∫
d4x0d

4x1d
4x2 Π̃

µνρ(x0, x1, x2)Aµ(x0)Aν(x1)Aρ(x2),

(6.6.23)
with Π̃µνρ(x0, x1, x2) an operator related to the quadratic response tensor by

Π̃µνρ(x0, x1, x2) =
∫
d4k0
(2π)4

d4k1
(2π)4

d4k2
(2π)4

(2π)4δ4(k0 + k1 + k2)

×e−i(k0x0+k1x1+k2x2)Πµνρ(k0, k1, k2). (6.6.24)

The corresponding term for the 4w-case is∫
d4xH4w(x) =

1
4

∫
d4x0d

4x1d
4x2d

4x3 Π̃
µνρσ(x0, x1, x2, x3)

×Aµ(x0)Aν(x1)Aρ(x2)Aσ(x3), (6.6.25)

with, analogous to (6.6.24),

Π̃µνρσ(x0, x1, x2, x3) =
∫
d4k0
(2π)4

d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

×(2π)4δ4(k0 + k1 + k2 + k3)e−i(k0x0+k1x1+k2x2+k3x3)Πµνρσ(k0, k1, k2, k3).
(6.6.26)

Second quantizing these terms is trivial: one replaces each A(k) by the corre-
sponding operator, Â(k), and includes the chronological ordering and normal
ordering operations.

The linear term (6.6.21) then contains the same linear term as in QED,
plus the 3-wave interaction term (6.6.24). Using (6.6.23), this additional term
is

Ŝ(3w) = − i
3

∫
d4x0d

4x1d
4x2 Π̃

µνρ(x0, x1, x2) T̂ {: Âµ(x0)Âν(x1)Âρ(x2) :}.
(6.6.27)

At second order, there are three additional terms. Two of these involve only
wave-wave interactions: one is the 4w-term, H4w(x), and the other is second
order in H3w(x); these combine to give an effective cubic response term, as
in the nonquantum case, cf. §5.7.5. The remaining term involves a product of
the conventional QED term and the 3w-term; this term leads to the quantum
version of nonlinear scattering, cf. §5.5.
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6.6.8 Interaction Hamiltonian in SED

The counterpart of QED for spinless (spin 0) particles is scalar electrody-
namics (SED). Whereas the Dirac Lagrangian is linear in the field Aµ(x), for
the Klein-Gordon equation there are two interaction terms in (6.3.24), a term
linear in the EM field,

Ĥ(1)
I (x) = iq : Âµ(x)[Ψ̂∗(x)∂µΨ̂(x) − Ψ̂(x)∂µΨ̂

∗(x)] :, (6.6.28)

and a term quadratic in the EM field,

Ĥ(2)
I (x) = −q2 : Â2(x)Ψ̂∗(x)Ψ̂ (x) : . (6.6.29)
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6.7 Elements in Feynman diagrams

The basic idea in introducing Feynman diagrams is to set up a one-to-one
correspondence between diagrams and terms in the S-matrix, and between
element in the diagrams and factors in the S-matrix.

6.7.1 Connected and disjoint diagrams

In the diagrammatic representation used here, the initial state is on the right
and the final state on the left. Electrons and positrons are described by solid
lines with arrows, with the arrow pointing from right to left for electrons
and from left to right for positrons. Wave quanta (photons) are described
by dashed lines. The basic interaction term in QED is described by a vertex
where a dashed line joins a solid line. The objective is to set up a one-to-one
correlation between diagrams and terms in the expansion of the S-matrix.
However, an important preliminary point is that we are only interested in a
subset of the terms in the expansion of the S-matrix: those that correspond
to connected diagrams.

Consider the nth order contribution in (6.6.10):

Ŝ(n) =
(ie)n

n!

∫
d4x1

∫
d4x2 . . .

∫
d4xnT̂ {: Ψ̂(x1)/̂A(x1)Ψ̂(x1) :

: Ψ̂(x2)/̂A(x2)Ψ̂(x2) : . . . : Ψ̂(xn)/̂A(xn)Ψ̂ (x)n :}. (6.7.1)

This element is represented by diagrams with n vertices. Each vertex is asso-
ciated with one space-time coordinate, x1, x2, . . ., xn, and each has a 4-tensor
index associated with it. Using Wick’s theorem, the nth order term separates
into terms with zero, one, two, etc., contractions. Each contraction corre-
sponds to a propagator between two of the vertices, which is described by an
internal line joining these two vertices. This is a solid line for an electron prop-
agator and a dashed line for a photon propagator. For example, the terms for
n = 2 consist of (a) a term corresponding to two disconnected first order ver-
tices, (b) two terms in which the two vertices are joined by either an electron
line or a photon line, leaving four external lines, (c) two diagrams in which the
two vertices are joined by two lines forming a closed loop, leaving two external
lines, and (d) a diagram in which the two vertices are joined by three internal
lines, leaving no external lines. The nth order term for n ≥ 2 separates in a
similar way into terms that involve disconnected diagrams, terms that have
n−1 internal lines joining the n vertices to form a simply connected diagram,
and terms that contain one or more closed loops.

The only physically relevant nth order diagrams are those that are con-
nected. Disconnected diagrams describe two or more independent processes
of lower order. A simply connected nth order diagram has n vertices, n + 2
external lines, each connected to only one vertex, and n−1 internal lines each
connecting two vertices. A further contraction for such a diagram leads to
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(a)

(d)

(e)

(i)

(h)

(g)

(f)

(b)

(c)

Fig. 6.2. The elements in Feynman diagrams in QED consist of: (a) incoming elec-
tron line, (b) incoming positron line, (c) incoming photon line, (d) internal electron
line, (e) internal positron line, (f) internal photon line, (g) outgoing electron line, (h)
outgoing positron line, and (i) outgoing photon line. At vertices, denoted by large
dots for emphasis, two solid lines and a dashed line join such that the direction of
the arrow along the solid line is continuous.

a closed internal loop. A connected diagram with n vertices and g > n − 1
propagators has g − n+ 1 closed loops.

6.7.2 First order diagrams in QED

Consider the first order term, n = 1 in (6.7.1) of the S-matrix. This term is

Ŝ(1) = ie
∫
d4x : Ψ̂(x)/̂A(x)Ψ̂ (x) : , (6.7.2)

which corresponds to a Feynman diagram with a single vertex. Each of the
three factors in the integrand in (6.7.2) contain a creation and an annihila-
tion operator, so that there are eight different terms corresponding to the
choice of one from each of these pairs. These eight terms have a one-to-one
correspondence with eight first-order Feynman diagrams.

These first order diagrams are illustrated in Fig. 6.3. Two of these,
Fig. 6.3a,c, have one particle in the initial state and the same particle, with
different quantum numbers, and a wave quantum in the final state. These de-
scribe emission by an electron or a positron, respectively. Two more diagrams,
Fig. 6.3b,d, are related to the first two by transferring the wave line from the
final to the initial state. These correspond to absorption of a wave quantum
by an electron or a positron, respectively. A further diagram, Fig. 6.3e, has
the electron and positron lines in the initial state and the wave quantum in
the final state. This describes annihilation of a pair into one wave quantum.
Fig. 6.3h describes the inverse process of decay of a wave quantum into a pair.
The remaining two diagrams, Fig. 6.3f,g, have all three lines in the initial or
final states, respectively. These can describe physical processes only if the
wave has negative energy, when they would correspond to simultaneous anni-
hilation of a pair and a negative energy wave and spontaneous generation of a
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(a)

(d)

(e)

(h)

(g)

(f)
(b)

(c)

Fig. 6.3. The Feynman diagrams for first order processes in QED are for: (a)
Cerenkov emission by an electron, (b) Landau damping by an electron, (c) Cerenkov
emission by a positron, (d) Landau damping by a positron, (e) pair annihilation into
one photon, (f) simultaneous annihilation of a pair and a photon, (g) simultaneous
creation of a pair and a photon, (h) decay of a photon into a pair. All these processes
are possible in principle in a medium.

pair and a negative energy wave, respectively. The concept of negative energy
waves is a useful one in plasma physics, but such waves are not considered
here.

A particular process is isolated by taking the matrix element of (6.7.2)
with appropriately constructed initial and final states. For example, consider
Cerenkov emission in which there is an electron with quantum numbers q in
the initial state, and an electron with quantum numbers q′ and a photon in the
mode M with 4-momentum k in the final state. Then one takes the matrix
element of (6.7.2) with | i 〉 = â†q| 0 〉, 〈 f | = 〈 0 |âq′ ĉM (k). The creation and
annihilation operators are paired with the relevant annihilation and creation
operators in (6.4.11), (6.4.12), and (6.4.14), specifically with

Ψ +
q (x) e−iεqt, Ψ+

q′(x) eiεq′ t, V

∫
d3k

(2π)3
aM γµe

∗µ
M eikM x,

with kMx = ωM t−k ·x, and where the arguments of aM , e∗µ
M are omitted for

simplicity in writing. The integral V d3k/(2π)3 is a density of states factor,
which is omitted for a photon in the initial states, whose state is specified,
and included for a photon in the sum over final states. This procedure picks
out the term

Ψ(x) /A(x)Ψ(x) → Ψ+†
q′ (x) eiεq′ t aM γµe

∗µ
M eikM x Ψ+

q (x) e−iεqt.

The integral over t in (6.7.2) is elementary, and the resulting expression is the
coordinate-space representation of the S-matrix for this specific process is

Sfi = ie
∫
d3x aM e

∗µ
M e−ik·xΨ+

q′(x) γµ Ψ
+

q (x) 2πδ(εq′ − εq + ωM ). (6.7.3)
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The S-matrix amplitude (6.7.3) corresponds to the Fig. 6.2a.
The x-dependence of the integrand in (6.7.3) is through the factors

Ψ+
q′(x) γµ Ψ

+
q (x) e−ik·x,

and the integral defines a vertex function. In the case of plane wavefunc-
tions, corresponding to free particles, the vertex function includes a δ-function
that expresses conservation of 3-momentum at the vertex. Combined with the
δ-function in (6.7.3) that expresses conservation of energy, the vertex func-
tion for free particles includes a δ-function that expresses conservation of
4-momentum.

6.7.3 Crossed diagrams

The amplitudes for the other seven diagrams in Fig. 6.2 are identified in
an analogous manner. A diagram with the wave quantum in the initial
state is obtained from the corresponding diagram with wave quantum in
the final state by the replacement e∗µ

M eikx → eµM e
−ikx. This corresponds

to k→ −k, with ωM (−k) = −ωM (k), RM (−k) = RM (k), aM (−k) = aM (k),
eµM (−k) = e∗µ

M (k). The amplitudes for the diagrams with the electron state la-
beled q transferred to the final state, when it becomes a positron, are related to
the corresponding amplitudes for the diagrams with the electron in the initial
state by Ψ +

q (x) e−iεqt → Ψ −
q (x) eiεqt. Similarly, the amplitudes for the dia-

grams with the electron state labeled q′ transferred to the initial state, when
it becomes a positron, are related to the corresponding amplitudes for the
diagrams with the electron in the final state by Ψ+

q′ (x) eiεq′ t → Ψ−
q′(x) e−iεq′ t.

Thus the S-matrix elements for the four diagrams in Fig. 6.3 that have the
wave quantum in the final state are given by

Sfi = ie
∑

f

∫
d4xaM Ψ

ε′
q′(x) eiε

′εq′ t γµ e
∗µ
M eikM x Ψ ε

q (x) e−iεεqt, (6.7.4)

The S-matrix elements for the remaining four are obtained from (6.7.4) by
k → −k. The sum in (6.7.4) is over the quantum numbers of the particles in
the final state.

Note that for emission by a positron this crossing procedure leads to the
initial state of the positron being labeled by q′ and the final state by q, which
is opposite to the labeling for emission by an electron. In this case the sum
over the quantum numbers in (6.7.4) is over q. For creation of a pair the sum
is over both q, q′, and for annihilation of a pair there is no sum.

6.7.4 Multiple-photon vertices

In QPD the effect of the quadratic and cubic responses are included through
the interaction Hamiltonians (6.6.23) and (6.6.24), respectively. The diagram-
matic counterparts of these are m-photon vertices, which are shaded circles
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Fig. 6.4. An m-photon vertex is a shaded circle with m external photon lines
connecting to m vertices. Such a diagrammatic element represents a nonlinear re-
sponse of the medium, with m = 3, 4, . . . corresponding to the quadratic, cubic, . . .
responses.

with m vertices connecting to photon lines, as illustrated in Fig. 6.4. The
quadratic response corresponds to a 3-photon vertex, and the cubic response
to a 4-photon vertex.

The quadratic response gives a first order term (6.6.27) in the expansion
of the S-matrix, and the cubic response gives a second order term. More
generally a single m-photon vertex gives an (m− 2)th order element.

6.7.5 Second-order processes

The singly-connected second-order diagrams lead to scattering processes, and
crossed processes related to them. When the contraction is between two Dirac
operators, it implies an internal electron/positron line, and the scattering is of
a photon by an electron or positron, which is Compton scattering. When the
contraction is between two electromagnetic operators, it implies an internal
photon line, and the scattering is of an electron or positron by an electron
or positron. Electron-electron scattering is Møller scattering, and electron-
positron scattering is Bhabha scattering.

In the generalization to QPD, Compton scattering is modified by the inclu-
sion of an additional term that describes nonlinear scattering. The nonlinear
scattering term arises from a contraction, leading to an internal photon line,
between an electron-photon vertex and a 3-photon vertex. The generaliza-
tion to QPD affects Møller and Bhabha scattering only in that the photon
propagator, corresponding to the internal photon line, becomes the photon
propagator in the medium, rather than the photon propagator in vacuo.

The terms involving more than one contraction lead to radiative correction.
These play an additional role in QPD. In particular, the statistical average
of the amplitude for diagrams that contain a closed electron loop describes a
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Fig. 6.5. Three examples of closed loops are shown. Conservation of 4-momentum
at each of the vertices determines the 4-momentum in each line around the loop
only to within an additive constant called the loop momentum.

nonlinear response. Once the nonlinear responses are included, closed particle
loops becomes redundant.

6.7.6 Propagators

In the expansion of the S-matrix, propagators appear in connection with
contractions. There are two types of contraction involving fields at x and x′.
One is a contraction over particle fields, and leads to the particle propagator.
Using (6.5.12) and (6.5.20), one has

Ψ̂(x)Ψ̂ (x′) = iG(x, x′) = i
∑
εq

Ψ ε
q(x)Ψ ε

q(x
′)
∫
dE

2π
e−iE(t−t′) Gε

q(E),

Gε
q(E) =

1
E − ε(εq − i0)

. (6.7.5)

For free particles, the momentum-space representation (6.5.3) of the propa-
gator is available. This corresponds to

G(x− x′) =
∫
d4P

(2π)4
e−iP (x−x′)G(P ), G(P ) =

/P +m
P 2 −m2

. (6.7.6)

The other type of contraction is over wave fields and this leads to the photon
propagator

Âµ(x)Â†ν(x′) = −iDµν(x− x′) = −i
∫

d4k

(2π)4
e−ik(x−x′)Dµν(k). (6.7.7)

6.7.7 Loop momentum

The foregoing arguments lead to the conclusion that in the momentum rep-
resentation there are δ-functions that imply that 4-momentum is conserved
at each vertex. There are also integrals over 4-momenta, with one integral
over 4-momentum per propagator. If there are no closed loops in the diagram,
then the integrals over each of these 4-momenta may be performed over one
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Fig. 6.6. An external field is represented by a squiggly that joins an elec-
tron/positron line at a vertex, and has its other end at an “x”.

of the δ-functions expressing 4-momentum conservation at the vertices. Once
all the integrals are performed in this way, one δ-function remains. This ex-
presses conservation of the net 4-momentum, and is implied by the factor
(2π)4δ4(pf − pi) that appears in the definition (6.6.18) of Tfi.

In general a diagram includes one or more closed loops; examples of closed
loops are illustrated in Fig. 6.5. The loop momentum is the undetermined
4-momentum in a closed loop. The loop momentum may be identified with
the 4-momentum in any line of the loop, and then the 4-momentum in any
other line is determined by conservation of 4-momentum at the vertices of the
loop. One is to integrate over each undetermined loop momentum.

6.7.8 External fields

In the discussion so far, the field Aµ(x) is assumed to describe wave quanta.
In some applications the field Aµ(x) is identified as a static or slowly vary-
ing external field. An interaction term that involves such an external field is
described by a vertex in which the photon line is replaced by a squiggly line
connected to an “x”. Such a vertex is illustrated in Fig. 6.6. When Aµ(x)
describes a static field, it is to be expressed in terms of its Fourier transform.
This provides the required exponential factor exp(−ikx) for the foregoing ar-
guments concerning conservation of 4-momentum at a vertex to be extended
to include a static field. The Fourier transform also contains an integral over
d4k/(2π)4. The 3-momentum provided by the static field is undetermined, and
the implication is that one integrates over this undetermined 3-momentum.

6.7.9 Vertex formalism

Two different methods for calculating the amplitude corresponding to a par-
ticular diagram are useful in different contexts. One is the momentum-space
formalism, discussed below, which applies only to free particles. The other is
a vertex formalism, that applies even when 3-momentum is not conserved.
In the vertex formalism it is assumed only that energy is conserved at each
vertex. In the vertex formalism the wavefunctions are assumed of the generic
form (6.2.1).

A vertex function,
[
γεε′

qq′(k)
]µ is defined by writing (6.7.4) in the form
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Sfi = ie
∑

f

aM e
∗
Mµ

[
γεε′

qq′(k)
]µ2πδ(εεq − ε′εq′ − ωM ), (6.7.8)

where the δ-function expresses conservation of energy. The vertex function is

[γε′ε
q′q(k)]µ =

∫
d3x e−ik·x Ψ ε′

q′ (x)γµΨ ε
q(x). (6.7.9)

The notation corresponds to a vertex with 4-tensor index µ, an outgoing
photon with wave vector k, an incoming electron/positron line with quantum
numbers ε, q and an outgoing electron/positron line with quantum numbers
ε′, q′.

Assuming that energy is conserved but 3-momentum is not necessarily
conserved, the S-matrix element, Sfi, contains a factor 2πδ(Ef−Ei), where Ef ,
Ei are the energies of the initial and final states, respectively. If 3-momentum is
not conserved then Sfi cannot be written in terms of the scattering amplitudes
Tfi orMfi, and the transition rate, wi→f cannot be written in the form (6.6.18).
Assuming the form

Sfi = δfi + 2πδ(Ef − Ei)Tfi, (6.7.10)

the counterpart of the transition rate (6.6.18) becomes

wi→f = 2πδ(Ef − Ei)|Tfi|2 (
∏
f

Df). (6.7.11)

6.7.10 Momentum-space representation

The expression for an S-matrix elements involves integrals over the space-
time variables corresponding to all the vertices, cf. (6.6.13). For free parti-
cles, which are described by plane wavefunctions, these integrals lead to δ-
functions, which describe conservation of 4-momentum at each vertex. Specif-
ically, consider an electron/photon vertex at the space-time point x. There
are three 4-momenta, p, p′ and k say. Suppose firstly that all lines correspond
to free particles. The exponential dependence has a minus sign, exp(−ipx),
for initial electron, positron or photon, and a plus sign, exp(ipx), for a final
electron, positron or photon. The δ-function then expresses the requirement
p = p′ + k, i.e., that 4-momentum be conserved at the vertex. If one or more
of the lines corresponds to a propagator, then (6.7.6) implies that the expo-
nential dependence has the minus sign for the propagator from x′ to x and
the plus sign for the propagator from x to x′. These propagators are inter-
preted as carrying 4-momentum into and away from the vertex, respectively,
and with this interpretation the δ-function expresses the requirement that the
total incoming 4-momentum balance the total outgoing 4-momentum at the
vertex.

For the plane wavefunctions considered here, 3-momentum is conserved
at each vertex, and a δ-function, of the form (2π)3δ3(ε′p′ − εp + k)/V , that
expresses conservation of 3-momentum at the vertex, is contained in Tfi. For
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the plane wavefunctions (6.2.10) with (6.2.14), the integral over d3x in (6.7.9)
gives this δ-function. In (6.7.11) the number of such δ-functions is equal to
the number of vertices. The sums of intermediate states include integrals,
V
∫
d3p/(2π)3, over the 3-momenta in internal lines, and after these are per-

formed, there is one remaining factor of the form (2π)3δ3(pf − pi)/V . Then
(6.7.11) reduces to (6.6.18), viz. wi→f = (2π)4δ4(pf − pi)|Tfi|2 (

∏
f Df).

For the plane wavefunctions it is convenient to introduce a reduced vertex
function,

[
Γ ε′ε

s′s(p
′,p)

]µ, by writing

[
γεε′

qq′ (k)
]µ =

(2π)3

V
δ3(k − ε′p′ + εp)

[
Γ ε′ε

s′s(p
′,p)

]µ
, (6.7.12)

[
Γ ε′ε

s′s(p′,p)
]µ = V ϕ̄ε′

s′(ε′p′) γµϕε
s(εp) =

ūε′
s′(ε′p′) γµuε

s(εp)√
2ε′

√
2ε

. (6.7.13)
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7

QPD processes

In this chapter, the plasmadynamical processes treated classically in chapter 5
are generalized to QPD. First, a set of rules is formulated for drawing Feynman
diagrams, writing down the amplitudes for these diagrams and identifying
the transition probabilities for specific processes. Emphasis is also placed on
examples where plasma effects play a role, such that the QPD theory differs
significantly from QED in vacuo. For example, this distinction is unimportant
at sufficiently high energy where the plasma effects are unimportant, and QED
in vacuo applies.

The processes discussed in this chapter involve free electrons and positrons,
described by plane wavefunctions, and the electrons are assumed unpolarized,
so that spin-dependent effects are ignored. The momentum space representa-
tion of the Feynman amplitudes is then appropriate. A vertex formalism is
presented, and its use is illustrated as an alternative to the momentum space
representation. The vertex formalism allows one to include spin-dependent
effects and an external field, notably a background magnetic field.

Rules for drawing diagrams and writing down the amplitudes correspond-
ing to them are summarized in §7.1, and these are applied to various plasma
processes in the remaining sections. The first order processes, Cerenkov emis-
sion, Landau damping and one-photon pair creation and annihilation, are dis-
cussed in §7.2. Second-order processes include scattering processes, and the
kinematics of scattering processes are discussed in §7.3. Wave-particle scat-
tering is discussed in §7.4. Mott scattering and bremsstrahlung are discussed
in §7.5. Electron-electron (Møller) scattering is discussed in §7.6. It is noted
that the QPD theory for wave-wave interactions is effectively identical to the
semiclassical theory, discussed in §5.7, and it is not considered explicitly in
this chapter.
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7.1 Rules for Feynman diagrams

The S-matrix expansion described in §6.6, and its representation in terms
of Feynman diagrams described in §6.7, leads to a set of rules for drawing
diagrams, writing down the amplitude corresponding to each diagram, and
for calculating the transition rate corresponding to each process. Such a set
of rules is summarized in this section.

7.1.1 Rules for drawing diagrams

The discussion in §6.7 leads to the rules for drawing diagrams for QED in
vacuo and for the generalization to QPD when the linear and nonlinear re-
sponses of the medium are taken into account.

(i) The initial state is to the right of the diagram and the final state is to
the left. For a given process (specified initial and final states) all diagrams
with the specified number and kind of particles and wave quanta in the
initial and final states are to be drawn.

(ii) An electron is represented by a solid line with an arrow pointing from
right to left and a positron is represented by a solid line with an arrow
pointing from left to right. The direction of the arrow along a solid line is
continuous.

(iii) A photon (any wave quantum) is represented by a dashed line.
(iv) An electron and a photon line join at an electron-photon vertex, which

has a 4-tensor index (µ, ν, . . .) and a space-time point associated with it.
(v) The nth order nonlinear response of the medium is represented by an

(n + 1)-photon vertex, which is a circle with n + 1 photon lines joining
onto it.

(vi) Any photon line begins or terminates at a vertex, either joining an
electron-positron line at electron-photon vertex, or a m-photon vertex.

(vii) An m-photon vertex represents a statistical average over an m-sided
closed particle loop, and closed particle loops are omitted in diagrams in
QPD so that their effect is not counted twice.

(viii) The order of a diagram is equal to the number of its vertices in the
absence of m-photon vertices. An m-photon vertex contributes m − 2 to
the order.

(ix) For diagrams in momentum space all lines are labeled with the 4-
momentum of the particles, rather than the vertices being labeled with
the space-time points. 4-momentum is conserved at a vertex.

(x) The integral d4P/(2π)4 over any undetermined 4-momentum, P , in a
closed loop or associated with an external field Aµ(P ) is to be performed.

(xi) An interaction with an external field is described by a vertex with the
photon line replaced by a squiggly line joined to an “x” that denotes the
source of the external field.
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7.1.2 Rules for constructing Sf i

Rules for writing down Sfi for a given diagram (in coordinate space) are:

Rule 1

The contributions from all diagrams with the specified number and kind of
initial and final particles are to be added in determining Sfi.

Rule 2

Each electron-photon vertex corresponds to a factor ie γµ, where µ is the 4-
tensor index associated with the vertex. The integrals are to be performed
over the space-time coordinates associated with each vertex.

Rule 3

An incoming electron line corresponds to Ψ +
q (x) e−iεqt, and incoming positron

line to Ψ
−
q (x) e−iεqt, an outgoing electron line to Ψ +

q (x) eiεqt, and an outgoing

positron line to Ψ
−
q (x) eiεqt, where q denotes the quantum numbers.

Rule 4

An incoming photon line in the mode M , joining at a vertex labeled (x, µ),
corresponds to a factor aM e

µ
M e

−ikM x, with aM = [µ0RM/V ωM ]1/2, and an
outgoing photon line to aM e

∗µ
M eikM x. In an interaction with an external field

Aµ(x), a factor Aµ(x) is included in place of these photon factors.

Rule 5

An internal electron-positron line pointing from x1 to x2 corresponds to the
propagator iG(x2, x1). An internal photon line between vertices (x1, µ) and
(x2, ν) corresponds to the propagator −iDµν(x2 − x1).

Rule 6

The Dirac spinors are written according to matrix multiplication along the
direction opposite to the arrow along each solid line. An extra minus sign
is to be included for each closed electron-positron loop. The overall phase
of the amplitude is unimportant, but two diagrams that differ only by the
interchange of two external electron-positron lines must have opposite signs.
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Rule 7

An m-photon vertex corresponds to a factor

− i

m

∫
d4x0 · · · d4xm−1

∫
d4k0
(2π)4

· · · d
4km−1

(2π)4
ei(k0x0+···+km−1xm−1)

×(2π)4 δ4(k0 + · · · + km−1)Π(m−1)µ0...µm−1(k0, . . . , km−1). (7.1.1)

7.1.3 Rules for momentum space representations

Rules for construction of the probability per unit time, wi→f , in momentum
space in terms of the transition amplitude iMfi, cf. (6.6.19), are:

Rule 8

The transition probability per unit time is

wi→f = V (2π)4 δ4(pf − pi)|Tfi|2Df

= V (2π)4 δ4(pf − pi)|Mfi|2
∣∣∣∣∣
∏
i

aM
1√
2εV

∏
f

aM
1√
2εV

∣∣∣∣∣
2

Df ,

(7.1.2)

where pf , pi are the total final and initial 4-momenta, respectively, where the
product in the second expression is over all initial and final particles and
photons, and where Df is the density of final states factor (10.1.10), viz.

Df =
∏
f

(
V d3p

(2π)3

)(
V d3k

(2π)3

)
. (7.1.3)

Rule 9

(a) An internal electron line corresponds to a factor iG(p), with the electron
propagator

G(P ) =
/P +m

P 2 −m2 + i0
. (7.1.4)

(b) An internal photon line corresponds to a factor −iDµν(k). Explicit forms
for Dµν(k) for a medium and for the vacuum are given in §2.1.
(c) An m-photon vertex corresponds to a factor

− i

m
Π(m−1)µ0µ1...µm−1(k0, k1, . . . , km−1).

The convention is adopted that positive frequencies correspond waves in the
initial state and negative frequencies to waves in the final state.
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Rule 10

In constructing iMfi each electron-photon vertex is represented by a factor
ieγµ, each initial electron, positron and photon is represented by factors us(p),
v̄s(p) and eµM (k) respectively, and each final electron, positron and photon is
represented by factors ūs(p), vs(p) and e∗µ

M , respectively. The matrix factors
are to be written in order of matrix multiplication along the direction opposite
to the arrow.

Rule 11

For unpolarized electrons or positrons one averages over the initial states of
polarization and sums over the final states of polarization. Such sums corre-
spond to∑

s=±
us(p)ūs(p) = /̃p+m,

∑
s=±

vs(p)v̄s(p) = /̃p−m, (7.1.5)

with p̃µ = [ε,p]. The average is half the sum.

Rule 12

The sum over polarization states of the photon is relevant only for transverse
waves, and gives

∑
pol

e∗µeν =
{
−T µν(k, ū) for k2 + µ0Π

T (k) = 0,
−gµν for k2 = 0,

(7.1.6)

where the latter is valid only for transverse waves in vacuo.

Rule 13

In a wave-wave interaction involving m waves, the amplitude for the wave-
wave interaction has a factor m! if all m fields are different. If not all the fields
are different, but r of them are the same, the factor m! is replaced by m!/r!.
There is an analogous reduction factor for identical fields in the final state.

7.1.4 Rules for the vertex formalism and for SED

The following two rules are for writing down the amplitude in the vertex
formalism, and applying this to the case of free particles:
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Fig. 7.1. The seagull diagram involves two photon lines joining to a particle line at
the same point.

Rule 14

The probability for a specific process is determined by (6.7.11), and in writing
down the amplitude for iTfi one makes the following identifications. Each
vertex is represented by a factor ie[γε′ε

q′q(k)]µ, with [γε′ε
q′q(k)]µ given by (6.7.9).

The rth internal electron-positron line is represented by a factor iGεr
qr

(Er)
given by (6.7.5), with the energy, Er, determined by energy conservation at
each vertex, starting from either the initial or the final state.

Rule 15

For plane wave solutions, one calculates iTfi in the vertex formalism by replac-
ing the vertex factor in Rule 14 by the reduced factor ie

[
Γ ε′ε

s′s(p′,p)
]µ, given

by (6.7.13), with the propagator given as in Rule 14 and with the integral
over particle 3-momenta omitted in the sum over an intermediate state.

The rules for Feynman diagrams for SED are different from those for QED.
One additional rule is required for drawing diagrams:

(xii) In SED the additional class of seagull diagrams, cf. Fig. 7.1, is to be in-
cluded to represent the contributions from the second-order Hamiltonian.

In writing down the scattering amplitude, iMfi, in SED one uses:

Rule 16

For a first-order vertex function, the factor ieγµ in QED is replaced by
−iq(ε′p′µ + εpµ) in SED, the propagator iG(P ) = i(/P + m)/(P 2 − m2) in
QED is replaced by −iG(P ) = −i/(P 2 −m2) = 1/(E2 − ε2) in SED, and the
initial and final wavefunctions (u, v, ū, v̄) in QED are replaced by unity in
SED. The vertex function associated with a seagull diagram is i2q2gµν and a
factor 1/2 is to be included in the S-matrix for each such photon loop formed
from a seagull diagram.

7.1.5 Rules for weak interactions

The following rules for the electroweak interactions are used in Chapter 10:



7.1 Rules for Feynman diagrams 285

Rule 17

A vertex between a neutrino line and a Z0 line corresponds to a factor

−i g

2 cosθW
γµ(gV + gAγ5),

and a vertex between a lepton line and a Z0 line corresponds to a factor

−i g

2 cos θW
γµ(1 + γ5).

A vertex between a lepton, a neutrino and a W corresponds to a factor

−i g
2
√

2
γµ(1 + γ5).

Rule 18

Internal Z0 or W line with 4-momentum k correspond to factors

gµν − kµkν/m
2
B

k2 −m2
B

≈ gµν

k2 −m2
B

,

with B = Z0,W . The approximate forms apply when the operators are be-
tween vertices with leptons, and terms of order the ratio of the squares of the
lepton mass to the mB are neglected.
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7.2 First-order processes

The first order processes in QPD are Cerenkov emission and Landau damp-
ing, by either an electron or by a positron, and one-photon pair creation or
annihilation. These processes are all forbidden in vacuo, in the sense that the
resonance condition cannot be satisfied. Specifically, 4-momentum conserva-
tion in the form ε′p′ = εp ± k, is incompatible with the requirement that
the initial and final particles be on their mass shell, p2 = m2 = p′2, and the
dispersion relation k2 = 0 for waves in vacuo. First order processes are not for-
bidden in a medium because the dispersion relation is not of the form k2 = 0.
Cerenkov emission and Landau damping require k2 < 0, and one-photon pair
creation and annihilation require k2 > 4m2. No first order process is allowed
for 0 ≤ k2 < 4m2.

7.2.1 Conservation of 4-momentum

The Feynman diagram for Cerenkov emission by an electron is shown in
Fig. 7.2. Conservation of 4-momentum for Cerenkov emission, as in Fig. 7.2,
corresponds to p′ = p − k, where the unprimed and primed momenta are
for the initial and final electrons, respectively. Landau damping is the corre-
sponding absorption process. In order to appeal to detailed balance one must
consider transitions between the same two states. If emission corresponds
to p → p′ = p − k, absorption must correspond to the inverse transition,
p′ = p− k → p. The other first order processes follow by crossing symmetries
that involve transferring lines between the initial and final states. With the
photon in the final state, conservation of 4-momentum for the various pro-
cesses becomes ε′p′ = εp − k, with ε = ε′ = +1 for Cerenkov emission by
an electron, ε = +1, ε′ = −1 for annihilation of a pair, and ε = ε′ = −1 for
Cerenkov emission by a positron. For Cerenkov emission by a positron, the
initial positron state is primed and the final positron state is unprimed. For
the inverses of two processes, namely creation of a pair and Landau damp-
ing by a positron, the roles of initial and final state are reversed. With these
interpretations, ε′p′ = εp − k described conservation of 4-momentum for all
these first order processes.

7.2.2 Transition rate for Cerenkov emission

The rules given in §7.1 allow one to write down the amplitude for Cerenkov
emission, and also allow one to write down the amplitude in a form that applies
to all first order processes. There are two different forms for the amplitude
written down in §7.1, one form is the amplitude iMfi and the other form is
the vertex formalism for the amplitude iTfi. For an electron the form iMfi is

iMfi = ie e∗Mµ ūs′(p′)γµus(p), (7.2.1)
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pp’

k

Fig. 7.2. The Feynman diagram for Cerenkov emission.

where s and s′ denote the initial and final spins of the electron, respectively.
The generalization to the other crossed processes corresponds to generalizing
the wavefunctions in (7.2.1) by writing

iMfi = ie e∗Mµ ū
ε′
s′(ε′p′)γµuε

s(εp), (7.2.2)

where the wavefunctions are defined by (6.2.14).
The vertex formalism for the amplitude iTfi gives

iTfi = ie aM(k) e∗Mµ(k)
[
Γ ε′ε

s′s(p′,p)
]µ
, (7.2.3)

with aM = [µ0RM/V ωM ]1/2, and where the vertex function is defined by
(6.7.13), viz.

[
Γ ε′ε

s′s(p′,p)
]µ = V ϕ̄ε′

s′(ε′p′) γµϕε
s(εp) =

ūε′
s′(ε′p′) γµuε

s(εp)√
2ε′

√
2ε

. (7.2.4)

The amplitudes iMfi and iTfi differ only by normalization factors for the
wavefunctions, including that for the photon, which are included in iTfi but
not in iMfi.

The probability per unit time of a transition is given by (7.1.2), which
reduces to

wi→f = V (2π)4 δ4(pf − pi)|Tfi|2Df , |Tfi|2 = |Mfi|2
∣∣∣∣ aM (k)√

2ε′V
√

2εV

∣∣∣∣
2

,

(7.2.5)
where Df is the density of final states factor. For Cerenkov emission, one has
Df = (V d3p′/(2π)3)(V d3k/(2π)3), where p′ and k correspond to the final
state. Thus, for Cerenkov emission by an electron, (7.2.5) with (7.2.1) reduces
to

wi→f = V (2π)4 δ4(p′ + k − p) |Mfi|2
|aM (k)|2
2εV 2ε′V

V d3p′

(2π)3
V d3k

(2π)3
. (7.2.6)

For the other crossed processes,Df corresponds to analogous integrals over the
3-momenta of the relevant final state. For example, one has Df = V d3p/(2π)3

for absorption (Landau damping) by an electron, Df = V d3k/(2π)3 for pair
annihilation and Df = (V d3p′/(2π)3)(V d3p/(2π)3) for pair creation.
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p p’ = p - k

k

Fig. 7.3. The Feynman diagram for Landau damping, which is the inverse of
Cerenkov emission. To use detailed balance the absorption must be between the
same two states as the emission in Fig. 7.2.

7.2.3 Probability of Cerenkov emission

It is convenient to rewrite (7.2.6) in a form that does not involve the normal-
ization volume, V , explicitly. In view of the dependence on V in the definition,
aM (k) = [µ0RM/V ωM ]1/2, cf. Rule 4 in §7.1, this is achieved by writing

wi→f = wM (p, k)(2π)3 δ3(p′ + k − p)
d3p′

(2π)3
d3k

(2π)3
, (7.2.7)

where wM (p, k) is the probability for Cerenkov emission by an electron. Labels
s′, s could to be included in the probability to indicate the spin dependence
explicitly, but one is rarely interested in the spin dependence and the spin
dependence is left implicit here. Using the form (7.2.1) this probability is
identified as

wM (p, k) =
µ0e

2RM

2ε2ε′ωM
|e∗Mµ ūs′(p′)γµus(p)|2 2π δ(ε′ − ε+ ωM ), (7.2.8)

where 3-momentum conservation is implicit in the form p′ = p−k. In (7.2.8)
and below, where no confusion should result, the arguments of ωM = ωM (k),
eM = eM (k), eµM = eµM (k) and RM = RM (k) are omitted.

When the crossed processes are of interest it is useful to generalize the
probability. Writing wM (p, k) → w++

M (p, k) for Cerenkov emission by an elec-
tron, the generalization is to wε′ε

M (p, k), which includes all the first order pro-
cesses. This generalization leads to

wε′ε
M (p, k) =

e2RM

ωM

∣∣e∗Mµ

[
Γ ε′ε

s′s(p′,p)
]µ∣∣2 2π δ(ε′ε′ − εε+ ωM ), (7.2.9)

where the form (7.2.3) is used. The form (7.2.9) reproduces (7.2.8) when one
inserts the expression (7.2.4) for the vertex function and sets ε′ = ε = 1. The
relation ε′p′ = εp−k is implicit in (7.2.9). An alternative way to write (7.2.9)
to make this relation explicit is

wε′ε
M (p, k) =

e2RM

ωM

∫
d3p′

(2π)3
∣∣e∗Mµ

[
Γ ε′ε

s′s(p′,p)
]µ∣∣2(2π)4δ4(ε′p′ − εp+ k).

(7.2.10)
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In the case of Cerenkov emission by an electron, the integral over p′ is of the
same from as in (7.2.7), where it arises from the density of final states.

7.2.4 Cerenkov emission by an unpolarized electron

If one is not interested in the polarization of the electron, one averages over
the initial states of polarization and sums over the final states of polarization.
For Cerenkov emission there is one particle in the initial state and one particle
in the final state, so that one includes a factor of 1

2 in the probability and sums
over s, s′. The sum follows from∑

s,s′

[
Γ ε′ε

s′s(p
′,p)

]µ[
Γ ε′ε

s′s(p
′,p)

]∗ν =
1
εε′
Fµν(εp, ε′p′),

Fµν(P, P ′) = 1
4Tr
[
γµ(/P +m)γν(/P ′ +m)

]
, (7.2.11)

where the definition (6.7.13) of the vertex function is used, and the sums over
the spins are performed. The trace is evaluated using (6.1.33), (6.1.34):

Fµν(P, P ′) = PµP ′ν + P ′µP ν + gµν(m2 − PP ′). (7.2.12)

The resonance condition ε′p′ = εp− k implies

Fµν(εp, ε′p′) = 2
[
(εp− 1

2k)
µ(εp− 1

2k)
ν + 1

4

(
k2gµν − kµkν

)]
, (7.2.13)

with εp− 1
2k = ε′p′ + 1

2k.
The spin-averaged probability is given by averaging over the initial spins

and summing over the final spins. This gives

wε′ε
M (p, k) =

µ0e
2RM

εε′ωM

[
|(εp − 1

2k) · eM |2 − 1
4ω

2
M + 1

4 |k × eM |2
]

× 2π δ(ε′ε′ − εε+ ωM ), (7.2.14)

where the temporal gauge eµM = [0, eM ] is assumed. The nonquantum limit
of (7.2.14) for Cerenkov emission by an electron (ε′ = ε = 1), reproduces to
the classical probability for Cerenkov emission (5.1.13).

The probability for the crossed process of one-photon pair creation is given
by (7.2.14) with ε = 1, ε′ = −1. An extra factor of 2 needs to be included in
the probability for pair creation because one now sums over the spins or both
particles in the final state. The probability for one-photon pair annihilation is
1/4 times the probability of pair creation, with the factor 1/4 arising from the
fact that one averages, rather than sums, over the spins of both particles in
the initial state. The probability of Cerenkov emission by a positron is given
by ε′ = ε = −1 in (7.2.14), with the primed state now interpreted as the
initial state. The probability for Cerenkov emission by a positron is formally
identical to the probability for Cerenkov emission by an electron. This follows
from (7.2.14) by first using ε′p′ + 1

2k = εp− 1
2k, then setting ε′ = ε = −1 and

finally interchanging primed and unprimed quantities, to reproduce (7.2.14)
with ε′ = ε = 1.
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7.2.5 Kinetic equations for Cerenkov emission

The probability (7.2.14) applies to a transition p→ p′ = p− k with emission
of a wave quantum. The inverse transition, p′ = p − k → p, corresponds to
absorption of a wave quantum, which is equivalent to Landau damping of the
waves. The Feynman diagram for the absorption process is shown in Fig. 7.3.
In place of (7.2.1) one has

iMfi = ie eMµ ūs(p)γµus′(p′). (7.2.15)

In place of (7.2.8) one has the transition rate

wi→f = wM (p, k)(2π)3 δ3(p′ + k − p)
V d3p′

(2π)3
, (7.2.16)

with the probability wM (p, k) given by (7.2.10) with ε′ = ε = 1. Thus the
probabilities of emission and absorption between two states are equal, as re-
quired by the principle of detailed balance.

Including induced effects, the total probability of emission (em) is

wem
M (p, k) = wM (p, k)n+

s (p) [1 − n+
s′(p′)] [1 +NM (k)], (7.2.17)

with p′ = p − k. The total probability of absorption (abs) is

wabs
M (p, k) = wM (p, k) [1 − n+

s (p)]n+
s′(p′)NM (k). (7.2.18)

The net probability of emission is the difference between (7.2.17) and (7.2.18).
After integrating over momentum space, this gives

DNM (k)
Dt

=
∑
s′s

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δ3(p′ − p + k)wM (p, k)

×
{
n+

s (p) [1 − n+
s′(p′)] +NM (k)

[
n+

s (p) − n+
s′(p′)

]}
, (7.2.19)

where the derivative D/Dt is defined by (5.2.6), viz.

D
Dt

= vµ
Mg(k)∂µ + k̇µ

M

∂

∂kµ
,

with vµ
Mg(k) = ∂ωM/∂kµ, and k̇µ

M = −∂ωM/∂xµ, implied by Hamilton’s
equations (3.7.3) in a weakly inhomogeneous medium. Also in (7.2.19), the
relation p′ = p − k is made explicit. The term independent of NM (k) in
(7.2.19) describes spontaneous emission and the term proportional to NM (k)
describes absorption.

The nonquantum limit of (7.2.19) involves not only neglecting quantum
effects in the probability, but also also assuming that the electrons are non-
degenerate. This corresponds to replacing the factors 1−n+

s (p) and 1−n+
s′(p′)

in (7.2.19) by unity. Degeneracy, which is significant when the particle occu-
pation number is non-negligible compared with unity: the transition rate is
then suppressed by the factor 1 − n+

s′(p′).
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7.2.6 Kinetic equation for the particles

A kinetic equation for the electrons is obtained from the rate at which the
occupation number, n+

s (p), changes due to emission and absorption events.
An emission event p→ p′ = p−k decreases n+

s (p) by unity and an absorption
event p′ = p − k → p increases n+

s (p) by unity. One also needs to take into
account transitions p→ p′′ = p+k, that decrease n+

s (p), and p′′ = p+k→ p,
that increase n+

s (p). Summing over these changes, the net rate of change gives

dn+
s (p)
dt

=
∫

d3k

(2π)3

(∑
s′′
wMss′′ (p+ k, k)n+

s′′(p′′)[1 − n+
s (p)]

−
∑
s′
wMss′ (p, k)n+

s (p)[1 − n+
s′(p′)]

+NM (k)
{∑

s′′
wMss′′ (p+ k, k)[n+

s′′(p′′) − n+
s (p)]

−
∑
s′
wMss′ (p, k)[n+

s (p) − n+
s′(p′)]

})
, (7.2.20)

with p′ = p − k, p′′ = p + k, and where the dependence of the probabil-
ity, wMss′ , on the spin states is included explicitly. As in (7.2.19), the terms
independent of NM (k) are due to spontaneous emission and the terms pro-
portional to NM (k) describe the induced processes. In the nonquantum limit,
(7.2.20) reduces to the quasilinear equation discussed in §5.2.

In thermal equilibrium, emission and absorption must be in balance. One
readily confirms that the right hand sides of (7.2.19), (7.2.20) vanish for Fermi-
Dirac distributions for the particles and Planck distribution for the waves:

n+
s (p) =

1
e(ε−µ)/T + 1

, n+
s′(p′) =

1
e(ε′−µ)/T + 1

, NM (k) =
1

eωM/T − 1
,

(7.2.21)
with ε′ = ε− ωM , and where µ is the chemical potential for the electrons.

7.2.7 Power radiated in transverse waves

The power radiated spontaneously per unit volume in Cerenkov emission
in the wave mode M by an individual unpolarized electron is calculated in
§5.3. The generalization to the relativistic quantum case follows by repeating
the calculation starting with the probability (7.2.14), with ε′ = ε = 1, rather
than with it semiclassical counterpart (5.1.13). The case of most interest is
for transverse waves in an isotropic dielectric. In the semiclassical treatment,
the Cerenkov condition requires cos θ = 1/n(ω)v, which is replaced by

cos θ =
1

n(ω)v

(
1 + [n2(ω) − 1]

ω

2ε

)
, (7.2.22)
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p

p’ = k - p
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p’ = k - p

kk

(a) (b)

Fig. 7.4. The Feynman diagrams for (a) decay of a single wave quantum into a pair
and (b) for annihilation of a pair into a single wave quantum.

The generalization of the result (5.3.4) for the power radiated is

P =
µ0e

2v

4π

∫
dωω

{
1 − cos2 θ + [n2(ω) − 1]

ω2

2ε2v2

}
, (7.2.23)

with the range of integration determined by in the quantum case, and the
limit on the ω-integration implied by cos θ < 1 reduces to

n(ω) >
εv

ω
−
[(εv
ω

)2

+ 1 − 2ε
ω

]1/2

. (7.2.24)

The result (7.2.23) was derived by Ginzburg [1].

7.2.8 One-photon pair creation

The Feynman diagrams for decay of a single wave quantum into a pair, and
for the inverse process of annihilation of a pair into a single wave quantum
are illustrated in Fig. 7.4. The probability for this process is given by (7.2.9)
with ε′ = −1:

w−+
M (p, k) =

e2RM

ωM

∣∣e∗Mµ

[
Γ−+

s′s (p′,p)
]µ∣∣2 2π δ(ε′ + ε− ωM ), (7.2.25)

with p′ = k−p. For unpolarized particles the probability follows from (7.2.14),
with ε = 1, ε′ = −1. The probability has an extra factor of 2 for decay of a
single wave quantum into a pair, and with this extra factor replaced by 1

2 for
annihilation of a pair into a single wave quantum. The resonance condition
requires ω2

M > 4m2 + |k|2 for one-photon pair creation to be possible. This
condition is not satisfied for the familiar longitudinal and transverse waves
in an isotropic plasma. A possible exception is in superdense plasmas, as
discussed in §9.6.4.

7.2.9 Kinetic equations for one-photon pair creation

The kinetic equations for the photons and the pairs due to one-photon pair
creation and annihilation follow by arguments similar to those leading to the
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kinetic equations (7.2.19), (7.2.20) for Cerenkov emission. On including the
occupation numbers, the probability of pair-annihilation transitions is

w−+
M (p,k)n+

s (p)n−s′(p′)[1 +NM (k)],

and the probability of pair-creation transitions is

w−+
M (p,k)NM (k)[1 − n+

s (p)][1 − n−s′(p′)].

A pair-creation transition decreases the occupation number, NM (k), and
increase the occupation numbers of both electrons, n+

s (p), and positrons,
n−s′(p′), and a pair-annihilation transition has the opposite effect. Adding up
the rates of change, the resulting kinetic equation for the wave quanta is

DNM (k)
Dt

=
∑
s′s

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δ3(p + p′ − k)w−+

M (p,k)

×
{
n+

s (p)n−s′(p′) −NM (k)[1 − n+
s (p) − n−s′(p′)]

}
. (7.2.26)

The corresponding kinetic equations for the electrons and positrons are

dn+
s (p)
dt

= −
∑
s′

∫
d3k

(2π)3

∫
d3p′

(2π)3
w−+

M (p,k)

×
{
n+

s (p)n−s′(p′) −NM (k)[1 − n+
s (p) − n−s′(p′)]

}
,

dn−s′(p′)
dt

= −
∑

s

∫
d3k

(2π)3

∫
d3p

(2π)3
w−+

M (p,k)

×
{
n+

s (p)n−s′(p′) −NM (k)[1 − n+
s (p) − n−s′(p′)]

}
. (7.2.27)

In most circumstances one is not interested in the spins, and assuming that the
probability and the occupation numbers are independent of spin, one averages
over initial spins and sums over final spins.

In thermal equilibrium, emission and absorption must be in balance. One
readily confirms that the right hand sides of (7.2.26), (7.2.27) vanish for the
thermal distributions

n+
s (p) =

1
e(ε−µ)/T + 1

, n−s′(p′) =
1

e(ε′+µ)/T + 1
, NM (k) =

1
eωM /T − 1

,

(7.2.28)
with ε′ + ε = ωM in the present case. The chemical potential (−µ) of the
positrons is equal and opposite to that of the electrons (µ) in equilibrium.

The possibility of maser-like action exists for pair annihilation seems pos-
sible for n+

s (p) + n−s′(p′) > 1 in (7.2.26), referred to as a ‘grasar’ [2]. This
condition is not easily satisfied. For example, in the completely degenerate
limit, T → 0, one has n+

s (p) = 1 for electrons but n−s (p) = 0 for positrons, so
that the condition is not satisfied; it is also not satisfied for thermal distribu-
tions at T > 0. The electron and positron distributions need to be partially
degenerate and nonthermal to allow n+

s (p) + n−s′(p′) > 1. Grasar action is
possible only if waves with ω2 > 4m2 + |k|2 exist in the plasma, and this does
seem possible for transverse waves in a superdense plasma, cf. §9.6.4.
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7.3 Scattering processes

A conventional scattering process in quantum field theory involves two parti-
cles in the initial state and two particles in the final state. The ‘particles’ may
be conventional particles, photons or quanta of other fields. Such scattering
processes include Compton (electron-photon) scattering, Møller (electron-
electron) scattering and Bhabha (electron-positron) scattering. The kinemat-
ics of all scattering processes can be described in a general way involving three
invariants, s, t, u, only two of which are independent. The scattering process
itself and the crossed processes associated with it, are described in terms of
different channels which correspond to distinct physically allowed regions for
the invariants s, t, u. In its standard form the kinematics is developed for
free particle on their mass shell, and this restricts to application to QPD to
transverse photons.

7.3.1 Invariant kinematics

The kinematics for a process involving scattering of two initial particles into
two final particles may be described in terms of a set of invariant. Let the
4-momenta be p1, p2, p3, p4. For free particles, the square of these 4-momenta
are determined by the rest masses be p2i = m2

i , i = 1–4. This includes the
case of photons in vacuo, which may be regarded as particles with zero rest
mass. It also applies to transverse photons in a cold plasma, with dispersion
relation k2 = ω2

p, and approximately to transverse waves in a hot plasma, with
k2 ≈ ω2

p0 for frequencies well above the cutoff, cf. (4.5.14). The form p2i = m2
i

also neglects macroscopic mass renormalization, which modifies the form of
the dispersion relation for particles. The form p2i = m2

i is assumed here, with
mi an invariant that need not necessarily be the rest mass of a particle.

Conservation of 4-momentum requires

p1 + p2 = p3 + p4, (7.3.1)

It is convenient to define three invariants:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (7.3.2)

One refers to the process in which the initial and final states contain the
particles 1, 2 and 3, 4, respectively, as the s-channel. A crossed process involves
interchanging one of the initial and final particles. The t-channel corresponds
to the crossed process in which the initial and final states contain the particles
1, 3 and 2, 4, respectively. For the t-channel, (7.3.1) is replaced by p1 − p3 =
−p2 + p4. The u-channel corresponds to the crossed process in which initial
and final states contain the particles 1, 4 and 2, 3, respectively, and (7.3.1) is
replaced by p1 − p4 = −p2 + p3.

Only two of the three invariants (7.3.2) are independent. The relation
between them follows directly from (7.3.1), (7.3.2):
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t

Fig. 7.5. The Mandelstam plane as described in the text.

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. (7.3.3)

There are limits on the physically allowed ranges of the invariants. For
actual particles, these limits arise from relations such as pipj ≥ mimj , which
may be proven by considering the rest frame of the jth particle, where one
has pipj = εimj ≥ mimj. Because pipj is an invariant, this inequality must
apply in all frames. In the s-channel the inequalities pipj ≥ mimj imply

s ≥ (m1 +m2)2, (m3 +m4)2,
t ≤ (m1 −m3)2, (m2 −m4)2,
u ≤ (m1 −m4)2, (m2 −m3)2. (7.3.4)

Similar limits may be derived for the t- and u-channels.
The limits (7.3.4) on s may be derived in terms of the so-called Gram

determinants∣∣∣∣ p21 p1p2
p1p2 p22

∣∣∣∣ ≤ 0,
∣∣∣∣ p21 p1p3
p3p1 p23

∣∣∣∣ ≤ 0,
∣∣∣∣ p21 p1p4
p1p4 p24

∣∣∣∣ ≤ 0. (7.3.5)

A proof of any one of these inequalities implies the other two. Consider the
first of them in the center-of-momentum frame, where the two particles have
3-momenta ±p. The determinant gives p21p

2
2−(p1p2)2 = (ε21+ |p|2)(ε22+ |p|2)−

(ε1ε2 + |p|2) = −|p|2(ε1 + ε2)2, which cannot be positive. By construction,
the Gram determinant is an invariant, and hence this result applies in an
arbitrary frame. A further inequality follows from the Gram determinant of
next highest rank: ∣∣∣∣∣∣

p21 p1p2 p1p3
p2p1 p22 p2p3
p3p1 p3p2 p23

∣∣∣∣∣∣ ≥ 0. (7.3.6)
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A proof of (7.3.6) follows by evaluating the determinant in the center-of-
momentum frame, when it reduces to (ε1 + ε2)2[|p|2|p3|2 − (p · p3)

2], which
cannot be negative. Analogous inequalities apply if any of p1, p2, p3 in (7.3.6)
is replaced by p4. After rearrangement (7.3.6) implies

stu ≤ a12s+ a13t+ a14u, a12 =
(m2

1m
2
2 −m2

3m
2
4)(m

2
1 +m2

2 −m2
3 −m2

4)
m2

1 +m2
2 +m2

3 +m2
4

,

(7.3.7)
with a13, a14 given by cyclic permutations of the subscripts.

7.3.2 Mandelstam diagram

A graphical presentation of the invariant variables, s, t, u, is given by the so-
called Mandelstam plane, which is illustrated in Fig. 7.5. In the Mandelstam
plane a given value of s, t and u is represented by a point which is a vertical
distance s, t and u from the three sides of an equilateral triangle of height
h = m2

1 +m2
2 +m2

3 +m2
4, which is assumed positive. For a point outside the

triangle, as illustrated by the point labeled s′, t′ and u′ in Fig. 7.5, one or
more of the distances is negative.

The allowed physical regions for the three channels are bordered by the
solutions of, cf. (7.3.7),

stu = a12s+ a13t+ a14u, s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4. (7.3.8)

There are three different allowed regions in general, corresponding to the three
different channels.

The Mandelstam plane for Compton scattering in vacuo is illustrated in
Fig. 7.6. The physical regions are determined by (7.3.6). The allowed region
for the s-channel is determined by t ≤ 0 and su ≤ m4. This is the shaded
region on the lower left of the figure. The other physical regions are the shaded
regions on the lower right, which is for the u-channel, and on the top of the
figure, which is for the t-channel.

For Møller scattering and Bhabha scattering, all four masses are equal.
Then the height of the triangle is h = 4m2, and the boundaries are the lines
s = 0, t = 0, u = 0. The allowed regions are the three infinite triangular
sections outside the triangle bordered by these three lines. Specifically, for the
s-channel the allowed region is for s ≥ 4m2 and t, u < 0.

7.3.3 Scattering cross section

It is a conventional to describe a scattering process in terms of its cross-
section, which is an invariant. A cross section is well defined only when the
initial state contains two particles, either or both of which may be photons.
The fact that the scattering cross section is a frame-independent quantity
allows one to choose a convenient frame, usually the center-of-momentum
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t = 4 m2

t = 0

u = 0
s = 0

su = m4

Fig. 7.6. The Mandelstam plane for Compton scattering in vacuo is illustrated.

frame, to evaluate it; once evaluated in the chosen frame, one may rewrite the
result in terms of invariants to generalize to an arbitrary frame.

The cross section is defined as the probability per unit time of a transi-
tion divided by the flux, j, of particles. A nonrelativistic definition of the flux
involves regarding one of the particles as a target, assumed at rest, and con-
sidering the rate per unit time and per unit area that the other particles are
incident on the target. The flux is j = vrel/V , where vrel is the speed of the in-
cident particles and V is the normalization volume. Let us refer to this frame
as the target frame. In a relativistic generalization, vrel is interpreted as the
relative speed, |v1−v2|, of approach of the two particles in any frame obtained
from the target frame by a Lorentz transformation along the direction of the
relative motion of the particles. One such frame is the center-of-momentum
frame, in which one has p1 = −p2. Then one has |v1−v2| = |p1|(ε1+ε2)/ε1ε2.
Noting that the invariant (p1p2)2 −m2

1m
2
2 has the value |p1|2(ε1 + ε2)2 in the

center-of-momentum frame, it follows that the flux may be written in the form

j =
I12
ε1ε2V

, I12 = [(p1p2)2 −m2
1m

2
2]

1/2. (7.3.9)

Alternative forms for I12 are

I12 = 1
2{[s− (m1 +m2)2][s− (m1 −m2)2]}1/2 = |p1|(ε1 + ε2), (7.3.10)

where the first form follows directly from the definition (7.3.2) of s, and where
the final expression applies in the center-of-momentum frame. The differential
scattering cross section is defined by

dσ =
wi→f

j
. (7.3.11)

The total scattering cross section is found by integrating the differential cross
section over the density of final states.



298 7 QPD processes

A proof that the cross section is an invariant involves writing it in a mani-
festly invariant form. On inserting the expression (7.1.2) for wi→f into (7.3.11)
with (7.3.9), one has

dσ = (2π)4δ4(p1 + p2 − p3 − p4)
|Mfi|2
4I12

d3p3

(2π)32ε3
d3p4

(2π)32ε4
. (7.3.12)

The final two integrals may be rewritten in covariant form according to

d3p3

(2π)32ε3
d3p4

(2π)32ε4
→ d4p3

(2π)4
2πδ(p23 −m2

3)
d4p4
(2π)4

2πδ(p24 −m2
4).

This shows that dσ is an invariant.
The form (7.3.12) for the differential cross section may be evaluated fur-

ther by carrying out four of the six integrals over the δ-function. One of the
remaining two integrals can be chosen as a trivial one over an azimuthal angle
for an azimuthally symmetric process. The remaining integral is over a po-
lar angle, and this may be written in covariant form as an integral over the
invariant t.

The first step in this evaluation is to perform the integral over d3p4 over
δ3(p1 +p2−p3−p4). Next, the integral over d3p3 is written in spherical polar
coordinates in the center-of-momentum frame, d3p3 → d|p3| |p3|2d cos θdφ.
The integral over d|p3| is performed over the remaining δ function:

∫
d|p3| |p3|2 δ(ε1 + ε2 − ε3 − ε4) = |p3|2

(
|p3|
ε3

+
|p4|
ε4

)−1

=
|p3|ε3ε4
ε3 + ε4

,

with p3 = −p4 in this frame. The axis is chosen along the direction p1,
implying p3 · p1 = |p3| |p1| cos θ, with θ the angle between p1 and p3. The
integral over d cos θ is rewritten in terms of an integral over dt, using t =
m2

1 +m2
3 − 2ε1ε3 + 2|p1| |p3| cos θ:

|p3|ε3ε4
ε3 + ε4

d cos θ → ε3ε4
2|p1|(ε1 + ε2)

dt

where ε3+ε4 = ε1+ε2 is used. The factors ε3ε4 cancel with the corresponding
factors in (7.3.12), and |p1|(ε1 + ε2) is written in terms of the invariant I12
using (7.3.9). Assuming azimuthal symmetry, the integral over azimuthal angle
gives 2π. In this way, the differential cross section reduces to the invariant form

dσ =
|Mfi|2
64π2

dt

I212
, (7.3.13)

with I12 given by (7.3.10). The integral is over the allowed range of t for
scattering in the s-channel.
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7.3.4 Application to Compton scattering

In Compton scattering, and the crossed processes of two-photon pair creation
and annihilation, two of the particles are photons. Suppose one writes p1 → p,
p2 → k, p3 → p′, p4 → k′, and assumes transverse waves with dispersion
relation k2 = ω2

p0, where ωp0 is the proper plasma frequency. In this case one
has m2

1 = m2
3 = m2 and m2

2 = m2
4 = ω2

p0, and hence

s = 2pk+m2+ω2
p0, t = −2kk′+2ω2

p0, u = −2pk′+m2+ω2
p0. (7.3.14)

The general kinematic restrictions (7.3.3) and (7.3.6) require

s+ t+ u = 2(m2 + ω2
p0), su ≤ (m2 − ω2

p0)
2. (7.3.15)

The s- and u-channels correspond to Compton scattering, and require t ≤ 0.
The t-channel corresponds to two-photon pair creation and annihilation, and
requires t ≥ 4m2. The Mandelstam plane for Compton scattering for ωp0 → 0
is illustrated in Fig. 7.6.
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7.4 Compton scattering and related processes

‘Compton scattering’ is used generically to describe the quantum theory of
the scattering of electrons (or positrons) and photons. Its classical counterpart
is Thomson scattering (§5.6). Intrinsic relativistic quantum effects and the
effects of the medium are important only in opposite limiting case: quantum
effects are important at high frequencies (ω∼>m), where the Thomson cross
section is modified to the Klein-Nishina cross section, and where the crossed
processes of two-photon pair creation and annihilation become possible, and
the effect of the medium is important only a low frequencies (ω ∼ ωp) and
wavenumbers (|k| ∼ 1/λD). In this section QPD is used to treat the general
process, and it is shown how it reproduces these limiting cases.

7.4.1 Compton scattering and nonlinear scattering

The Feynman diagrams for Compton scattering are illustrated in Fig. 7.7.
Figures 7.7a,b differ in the order in which the initial photon is absorbed and
the final photon is emitted by the electron. Fig. 7.7c describes nonlinear scat-
tering.

The rules given in §7.1 allow one to write down the scattering amplitude
either in the form iMfi or in the form iTfi. In the former case, the scattering
amplitude is

iMfi = −ie∗M ′νeMµ ūs′(p′)
{
e2 [γµG(p− k′)γν + γνG(p+ k)γµ]

+e γσDσρ(k − k′)Π(2)µνρ(−k′, k, k′ − k)
}
us(p), (7.4.1)

where M ′ and M refer to the initial (unscattered) and final (scattered) wave
modes. The first two terms inside the curly brackets correspond to Compton
scattering and the final term correspond to nonlinear scattering. In the ampli-
tude for the final term a factor 1/3, associated with the quadratic nonlinear
response according to the rules in §7.1, is canceled by a factor of 3 due to
the three ways that the label for the line joining the 3-photon vertex to the
electron line may be chosen. The nonlinear scattering term is absent in an
unmagnetized vacuum, a pure pair plasma, or any other medium for which
the quadratic nonlinear response is zero.

The general expression for the probability per unit time of a transition
p+ kM ↔ p′ + k′M ′ is

wi→f = V (2π)4 δ4(pf − pi)|Mfi|2
∣∣∣∣aM ′(k′)aM (k)√

2ε′V
√

2εV

∣∣∣∣
2

Df . (7.4.2)

In (7.4.2) the wave 4-vectors are kM = [ωM (k),k], k′M ′ = [ωM ′(k′),k′], and
the density of final state factor for Compton scattering by an electron is
Df = [V d3p′/(2π)3][V d3k′/(2π)3].
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Fig. 7.7. The two Feynman diagrams, (a) and (b), for Compton scattering, and the
diagram (c) for nonlinear scattering.

7.4.2 Derivation using the vertex formalism

The vertex formalism provides an alternative form for the transition rate. The
rules in §7.1 for the vertex formalism imply

iTfi = −ie2 aM ′(k′)aM (k) e∗M ′νeMµ

[
Qε′ε

s′s(p
′,p; k′,k)

]µν
, (7.4.3)

[
Qε′ε

s′s(p
′,p; k′,k)

]µν =
∑
ε1,s1

[
Γ ε′ε1

s′s1
(p′,p1)

]µ[
Γ ε1ε

s1s(p1,p)
]ν

ε− ω′ − ε1ε1

+
∑
ε2,s2

[
Γ ε′ε2

s′s2
(p′,p2)

]ν[
Γ ε2ε

s2s(p2,p)
]µ

ε+ ω − ε2ε2

+
[
Γ ε′ε

s′s(p
′,p)

]σ
DσρΠ

(2)µνρ(−k′, k, k′ − k), (7.4.4)

with ε′p′ = εp + k − k′, ε1 = [m2 + (εp − k′)2]1/2, ε2 = [m2 + (εp + k)2]1/2.
The relation between the scattering amplitudes (7.4.1) and (7.4.3) be-

comes apparent after summing over the intermediate states in (7.4.4). This
is achieved by writing the vertex function in the form (7.2.4) and performing
the sum of the intermediate spin states using (6.2.12). For ε′ = ε = 1, with
ϕ+

s (p) = us(p)/(2εV )1/2, one finds[
Q++

s′s (p′,p; k′,k)
]µν = ūs′(p′)

[
γµG(p− k′)γν + γνG(p+ k)γµ

+(1/e) γσDσρ(k − k′)Π(2)µνρ(−k′, k, k′ − k)
]
us(p). (7.4.5)

The equivalence of the two formalisms is evident.
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7.4.3 Probability for Compton scattering

The probability, wε′ε
M ′M (p, k′, k), for Compton scattering is defined by writing

the transition probability (7.4.2) in the form

wi→f =
1
V
wε′ε

M ′M (p, k′, k) (2π)3 δ3(ε′p′ + k′ − εp − k)Df , (7.4.6)

where the dependence of the probability on the spin states, s, s′, is suppressed
for simplicity in writing. The probability is related to the matrix elements by

wε′ε
M ′M (p, k′, k) = V 2|Tfi|2 =

µ2
0RMRM ′

4εε′ωMωM ′
|Mfi|2. (7.4.7)

The form involving Tfi leads to an explicit expression when (7.4.3) is inserted:

wε′ε
M ′M (p, k′, k) =

µ2
0e

4RMRM ′

εε′ωMωM ′

∣∣[Qε′ε
s′s(p

′; p,k′,k)
]
M ′M

∣∣2
×2πδ(ε′ε′ − εε− ωM + ωM ′),[

Qε′ε
s′s(p

′; p,k′,k)
]
M ′M = e∗M ′νeMµ

[
Qε′ε

s′s(p
′; p,k′,k)

]µν
, (7.4.8)

with ε′p′ = εp + k − k′, ε′ = (m2 + |p′|2)1/2.

7.4.4 Kinetic equations for Compton scattering

Compton scattering leads to the following kinetic equations for the waves in
the two modes:

DNM (k)
Dt

=−
∫
d3p

(2π)3

∫
d3k′

(2π)3
w++

M ′M (p, k′, k)
{
n(p)

[
1 − n(p′)

]
NM (k)

−n(p′)
[
1 − n(p)

]
NM ′(k′) +NM (k)NM ′(k′)

[
n(p) − n(p′)

]}
,

(7.4.9)

DNM ′(k′)
Dt

=
∫
d3p

(2π)3

∫
d3k

(2π)3
w++

M ′M (p, k′, k)
{
n(p)

[
1 − n(p′)

]
NM (k)

−n(p′)
[
1 − n(p)

]
NM ′(k′) +NM (k)NM ′(k′)

[
n(p) − n(p′)

]}
,

(7.4.10)

with n(p) = n+(p) the occupation number for the electrons, and with p′ =
p+k−k′. Equations (7.4.9), (7.4.10) are generalizations of their semiclassical
counterparts (5.5.11), (5.5.12), respectively.

The corresponding kinetic equation for the particles is
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dn(p)
dt

= −
∫
d3k

(2π)3

∫
d3k′

(2π)3

(
w++

M ′M (p, k′, k)
{
n(p)

[
1 − n(p′)

]
NM (k)

−n(p′)
[
1 − n(p)

]
NM ′(k′) +NM (k)NM ′ (k′)

[
n(p) − n(p′)

]}

−w++
M ′M (p′′, k′, k)

{
n(p′′)

[
1 − n(p)

]
NM (k)

−n(p)
[
1 − n(p′′)

]
NM ′(k′) +NM (k)NM ′(k′) )

[
n(p′′) − n(p)

]})
,

(7.4.11)

Equation (7.4.11) generalizes its semiclassical counterpart (5.5.13).
The pair of equations (7.4.9), (7.4.10) conserves the total number of pho-

tons, ∫
d3k

(2π)3
DNM (k)

Dt
+
∫
d3k′

(2π)3
DNM ′(k′)

Dt
= 0. (7.4.12)

The set of equations (7.4.9)–(7.4.11) conserves the total 4-momentum in the
particles and the waves∫

d3p

(2π)3
pµ dn(p)

dt
+
∫

d3k

(2π)3
kµ DNM (k)

Dt
+
∫
d3k′

(2π)3
k′µ

DNM ′ (k′)
Dt

= 0.

(7.4.13)
The foregoing kinetic equations are derived on the assumption that the

initial and final photons are in different modes. If the two modes are the
same, M ′ =M , the kinetic equation for the waves becomes

DNM (k)
Dt

=−
∫
d3p

(2π)3

∫
d3k′

(2π)3

(
w++

MM (p, k′, k)
{
n(p)

[
1 − n(p′)

]
NM (k)

−n(p′)
[
1 − n(p)

]
NM ′(k′) +NM (k)NM ′(k′)

[
n(p) − n(p′)

]}

+w++
MM (p′′, k′, k)

{
n(p′′)

[
1 − n(p)

]
NM (k′)

−n(p)
[
1 − n(p′′)

]
NM (k′) −NM (k)NM (k′)

[
n(p) − n(p′′)

]})
.

(7.4.14)

The total number of photons in the mode M is conserved.

7.4.5 Compton scattering in vacuo

As already remarked, intrinsically relativistic quantum effects and the effects
of a medium are important under quite different conditions, and in considering
relativistic quantum effects it is appropriate to concentrate on scattering by
unpolarized electrons in vacuo. Then there is no nonlinear scattering, and the
waves satisfy k2 = 0 = k′2.
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The scattering probability (7.4.7) with (7.4.1) is evaluated here assuming
that both wave modes, M,M ′, correspond to transverse waves in vacuo. The
particles are assumed unpolarized, and the sum over the initial spins and
average over final spins is performed. The probability becomes

wε′ε(p, k′, k) =
(2π)3r20m

2

εε′ωω
Xε′ε(p,k′,k) δ(ε′ε′ − εε− ω + ω), (7.4.15)

with the explicit form

Xε′ε(p,k′,k) =
1
32

Tr[(/P ′ +m)Φ̄(/P +m)Φ],

Φ = /e
/P − /k′ +m

(P − k′)2 −m2
/e′ + /e′

/P + /k +m
(P + k)2 −m2

/e, (7.4.16)

where eµ, e′µ denote the polarization 4-vectors for the initial and final photons,
respectively, and with P = εp, P ′ = ε′p′.

The evaluation of the trace in (7.4.16) is tedious in general. For Compton
scattering by an electron in vacuo it can be simplified by choosing the rest
frame of the particle, so that the denominators gives

(p− k′)2 −m2 = −2pk′ = −2mω′, (p+ k)2−m2 = 2pk = 2mω. (7.4.17)

Transverse waves in vacuo have k2 = 0 = k′2, and ek = e′k′ = 0, and on
choosing the temporal gauge, one also has ep = 0, e′p = 0, together with
the normalization conditions ee = e′e′ = −1. (It suffices to consider real
polarization vectors.) Hence, the only non-vanishing invariants are those in
(7.4.17) together with ee′, ek′ and e′k, and the latter two do not appear in
the final result. Evaluation of the trace in the rest frame gives

X++(p,k′,k) =
1
8

[
ω

ω′ +
ω′

ω
+ 2|ee′|2 − 1

]
, (7.4.18)

Most interest is in the case of unpolarized photons. This case follows by aver-
aging (7.4.18) over the initial states of polarization and summing over the final
states of polarization. This corresponds to replacing |ee′|2 by 1

2 (1 + cos2 χ),
so that (7.4.18) gives

X̄++(p,k′,k) =
1
4

[
ω

ω′ +
ω′

ω
− sin2 χ

]
, (7.4.19)

where χ is the angle between k and k′ in this frame, and with ε = m, ε′ =
m− ω + ω′ in this frame.

7.4.6 Corrections for Compton scattering in a plasma

Even in the simplest case of a cold plasma, the generalization of (7.4.19)
leads to significant complications. It is straightforward to generalize (7.4.17)
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to the dispersion relation k2 = ω2
p = k′2: one simply replaces (7.4.17) by

(p − k′)2 − m2 = −2mω′ + ω2
p, (p + k)2 − m2 = 2mω + ω2

p. However, one
cannot use the argument that the waves are transverse in the rest frame of the
scattering particle. Transverse waves in a plasma are strictly transverse only
in the rest frame of the plasma; the polarization vector in an arbitrary frame
is determined by (2.6.14). This leads to a substantial increase in algebraic
complexity over the vacuum case.

The effect of the plasma on the wave dispersion is neglected in the following
discussion of Compton scattering.

7.4.7 Compton scattering of unpolarized photons

The probability for Compton scattering by an unpolarized electron of unpo-
larized radiation is obtained by rewriting (7.4.19) in terms of invariants and
inserting it into (7.4.15). The frequencies are rewritten in terms of the invari-
ants pk, pk′ using (7.4.17), and one identifies the invariant 1−m2kk′/(pk pk′)
as being equal to cosχ in the rest frame. Hence, the probability is

w++(p, k′, k) =
(2π)3r20m2

εε′ωω
X++(p,k′,k) δ(ε′ − ε− ω + ω), (7.4.20)

X̄++(p,k′,k) =
1
4

[
pk

pk′
+
pk′

pk
− 2
m2kk′

pk pk′
+
(
m2kk′

pk pk′

)2
]
. (7.4.21)

The probability (7.4.20) generalizes its nonquantum counterpart (5.6.1).
The expression (7.4.21) applies specifically to Compton scattering by an

electrons, which corresponds to the s-channel in the notation used in §7.3.
Expressions that apply to the crossed processes may be obtained by first
rewriting (7.4.21) in terms of the invariants s, t, u. With ω2

p = 0 here, (7.3.14)
gives s = 2pk +m2, t = −2kk′, u = −2pk′ +m2, with s+ t + u = 2m2. It is
convenient to write (7.4.21) in terms of s, u:

X++(p,k′,k) =
(

m2

s−m2
+

m2

u−m2

)2

+
m2

s−m2
+

m2

u−m2

−1
4

(
s−m2

u−m2
+
u−m2

s−m2

)
. (7.4.22)

7.4.8 Compton cross section

It is conventional to describe Compton scattering in terms of a scattering cross
section. The differential cross section for Compton scattering is

dσ =
2(2π)2r20m

2

ω′ε′
X(p,k′,k)
s−m2

(2π)4 δ4(p′ + k′ − p− k) d
3p′

(2π)3
d3k′

(2π)3
. (7.4.23)



306 7 QPD processes

The total cross section for Compton scattering is found by integrating (7.4.23)
over the final states factor. In integrating (7.4.23) it is convenient to choose
the center-of-momentum frame, in which one has p = −k and p′ = −k′, and
hence ε′ = (m2 + ω′2)1/2. The k′-integral may be performed by writing it in
spherical polar coordinates, with the integral over |k′| = ω′ performed using
the δ-function: ∫

dω′ δ(ε′ + ω′ − ε− ω) =
ε′

ε+ ω
.

The integral over azimuthal angle is trivial, and the remaining angular in-
tegral, over d cosΘ where Θ is the angle between k and k′ in the center-
of-momentum frame, may be replaced by an integral over the invariant
t = (k − k′)2:

t = −2ωω′(1 − cosΘ), d cosΘ =
dt

2ωω′ . (7.4.24)

For unpolarized photons, the differential scattering cross section (7.4.23) is in
the manifestly invariant form

dσ =
8πr20m

2X

(s−m2)2
dt, (7.4.25)

with X = X++(p,k′,k) given by (7.4.22).

7.4.9 Klein-Nishina cross section

The Klein-Nishina cross section applies in the frame in which the initial elec-
tron is at rest. In this frame, let the angle between k,k′ be χ. By considering
the square of p′ = p+ k − k′, with p′2 = p2 = m2, k′2 = k2 = 0, one finds

m(ω − ω′) − ωω′(1 − cosχ) = 0. (7.4.26)

Also, in this frame, one has

s−m2 = 2mω, u−m2 = −2mω′, t = −2ωω′(1 − cosχ). (7.4.27)

Then (7.4.25) becomes the differential form of the Klein-Nishina cross section:

dσ = 1
2r

2
0

(
ω′

ω

)2(
ω′

ω
+
ω

ω′ − sin2 χ

)
d2Ω, (7.4.28)

where r0 = µ0e
2/4πm is the classical radius of the electron.

The Klein-Nishina cross section is obtained by performing the integral in
(7.4.28). The integral over azimuthal angle φ is trivial, and the integral over
d cosχmay be rewritten as an integral over ω′ using (7.4.26), d2Ω → 2πd cosχ
with d cosχ = mdω′/ω′2 from (7.4.26). Then (7.4.28) is replaced by
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dσ = πmr20
dω′

ω′2

[
ω′

ω
+
ω

ω′ − 2m
(

1
ω′ −

1
ω

)
+m2

(
1
ω′ −

1
ω

)2
]
, (7.4.29)

where sin2 χ in (7.4.28) is rewritten using (7.4.26). The range of integration
over ω′ is restricted to ω′ ≤ ω by conservation of energy (the electron is
initially at rest and so its energy cannot decrease), and by the condition
su ≤ m4, which implies ω′ ≥ mω/(m+ 2ω). Carrying out the integral over ω′

gives

σKN =
2πr20
x

[(
1 − 4

x
− 8
x2

)
ln(1 + x) +

1
2

+
8
x
− 1

2(1 + x)2

]
, (7.4.30)

with x = 2ω/m. In this frame one has 2ω/m = (s − m2)/m2, and hence
by identifying x = (s −m2)/m2, (7.4.30) is in invariant form. On expanding
(7.4.30) in powers of x, the leading term reproduces the Thomson cross section.
For x � 1, corresponding to photons with energy � 1 MeV incident on an
electron at rest, the cross section decreases ∼ x−3 lnx. This reduction from
the Thomson cross section is the Klein-Nishina effect.
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7.5 Mott scattering and bremsstrahlung

The scattering of one particle by another is a standard problem in QED,
and the inclusion of cooperative effects associated with a medium causes only
minor changes to the theory. In this section, the scattering of an electron by
an ion is considered for the case where the encounter is a distant one. It is
only in such cases that the effect of the medium is important. When the ion is
treated classically, as a source of a Coulomb field, the interaction corresponds
to Mott scattering. Electron-ion bremsstrahlung is related to Mott scattering;
for sufficiently low energy electrons, the cross section for bremsstrahlung is
proportional to the Mott cross section.

7.5.1 Scattering of an electron by a Coulomb field

Let the electric field due to a nucleus with charge Ze be described as an
external field Aµ

ext(x). In the approximation in which the nucleus is of infinite
mass and located at the origin, r = 0, the field is the Coulomb field (in the
Coulomb gauge)

Aext(x) = 0, Φext(x) = − Ze

4πε0r
e−r/λD , (7.5.1)

where Debye screening is taken into account, with λD the Debye length. The
Fourier transform of the external field is required below. One finds

Aµ
ext(k) = [Φext(k),0], Φext(k) = − Ze

ε0(|k|2 + λ−2
D )

2πδ(ω), (7.5.2)

where the integral used is∫
d3x

e−r/λD

r
exp(−ik · x) =

4π
|k|2 + λ−2

D

. (7.5.3)

In the following discussion, Debye screening is initially neglected in deriving
the Mott cross section, and the effect of finite λD is discussed separately.

Considerable simplification occurs in the Born approximation, in which
the electron wavefunction is taken to be a plane wave, rather than the exact
solution of an electron in a Coulomb field. Only the Born approximation is
considered here.

7.5.2 Mott scattering

The Feynman diagram for scattering of an electron by an external field is
Fig. 7.8. The scattering amplitude follows from Rules 1 and 14 in §7.1, which
imply

iMfi = ieūs′(p′) γ0 us(p)
(
− Ze

ε0|p′ − p|2

)
. (7.5.4)



7.5 Mott scattering and bremsstrahlung 309

q

pp’

Fig. 7.8. The Feynman diagram for scattering of an electron by an external field.

The transition probability is

wi→f =
Z2e4

ε20|p′ − p|4
2π δ(ε′ − ε)

2ε′2εV 2
|ūs′(p′) γ0 us(p)|2. (7.5.5)

The δ-function in (7.5.5) gives ε′ = ε, so that the energy and hence the speed
v of the electron are unchanged. (This is due to the assumption that the ion
is of infinite mass; for an ion of finite mass the sum of the energies of the
electron and ion is conserved.) One has

|p′ − p|2 = 2|p|2(1 − cosχ) = 4|p|2 sin2 1
2χ, (7.5.6)

where χ is the scattering angle, between p′,p.

7.5.3 Mott cross section

For unpolarized electrons, one averages over the initial spin states and sums
over the final spin states, giving

1
2 |ūs′(p′) γ0 us(p)|2 = 1

2Tr[(/p′ +m)γ0(/p+m)γ0]

= 2(p′0p0 + p′ · p +m2) = 4ε2(1 − v2 sin2 1
2χ). (7.5.7)

The differential cross section is found by multiplying by the density of final
states V d3p′/(2π)3, carrying out the integral over |p′|, and dividing by the
flux of incoming particles v/V . The resulting Mott cross section is (in ordinary
units)

dσ

d2Ω
=
Z2

i r
2
0(1 − β2 sin2 1

2χ)
4γ2β4 sin4 1

2χ
, (7.5.8)

with β = v/c. The cross section (7.5.8) is identical to its classical counterpart
(5.3.11). It follows that intrinsically quantum effects are not important. How-
ever, this is the case only in the approximation in which the electron is treated
as a free particle, which is the Born approximation in the quantum treatment.
The exact treatment involves Coulomb wavefunctions, and the classical and
quantum theories differ, e.g., due to the quantization of bound states. The
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Fig. 7.9. The Feynman diagrams for bremsstrahlung due to scattering of an electron
by an external field.

Mott cross section applies only to sufficiently distant encounters, such that
the plane wave approximation is valid. Moreover, (7.5.8) applies only when
Debye screening is neglected.

For a finite Debye length the foregoing calculation is modified by the de-
nominator |k|4 being replaced by (|k|2 + λ−2

D )2 in accord with (7.5.2). This
leads to (7.5.8) being replaced by (ordinary units)

dσ

d2Ω
=

Z2
i r

2
0(1 − β2 sin2 1

2χ)
4γ2β4(sin2 1

2χ+ h̄2c2/4λ2
D|p|2)2

. (7.5.9)

Thus, the divergence in the cross section for forward scattering, χ → 0, is
removed by the Debye screening. A simple physical interpretation is that the
cross section diverges due to the infinite range of the Coulomb field, with
the cross section increasing without limit for sufficiently distant encounters.
Debye shielding effectively cuts the Coulomb field off for r∼>λD, so that more
distant encounters than r∼>λD have no significant effect on the electron.

7.5.4 Bremsstrahlung in Mott scattering

In Mott scattering an electron is scattered by an ion that provides a Coulomb
field, with the electron treated in the Born approximation. During such scat-
tering the electron can emit a photon, which constitutes the simplest model for
electron-ion bremsstrahlung. The Feynman diagrams for such bremsstrahlung
are illustrated in Fig. 7.9.

Proceeding as in the treatment of Mott scattering, cf. (7.5.1)–(7.5.4), the
scattering amplitude is

iMfi =
Ze3

ε0|p′ + k − p|2 e
∗
Mµūs′(p′)

×
[
γµ(/p′ + /k +m)γ0

(p′ + k)2 −m2
+
γ0(/p− /k +m)γµ

(p− k)2 −m2

]
us(p). (7.5.10)

The transition probability is
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wi→f =
Z2e6

ε20|p′ + k − p|4
µ0RM

ωMV

2π δ(ε′ − ε− ωM )
2ε′V 2εV

×
∣∣∣∣e∗Mµūs′(p′)

[
γµ(/p′ + /k +m)γ0

(p′ + k)2 −m2
+
γ0(/p− /k +m)γµ

(p− k)2 −m2

]
us(p)

∣∣∣∣
2

Df . (7.5.11)

The density of final states factor is Df = (V d3p′/(2π)3) (V d3k/(2π)3).
For unpolarized electrons one averages over the initial states and sum over

final states of the electron. This involves evaluating the trace

wi→f ∝ 1
2Tr
{

(/p′ +m)
[
γµ (/p′ + /k +m)

2p′k + k2
γ0 − γ0 (/p− /k +m)

2pk − k2
γµ

]

×(/p+m)
[
γ0 (/p′ + /k +m)

2p′k + k2
γν − γν (/p− /k +m)

2pk − k2
γ0

]}
. (7.5.12)

The resulting calculation is quite lengthy, and it is worthwhile looking for
tricks to simplify it. One trick is to appeal to Dirac’s equation in the forms
(/p−m)u = 0, ū′(/p′ −m) = 0. The trace in (7.5.12) simplifies to

wi→f ∝ 1
2Tr
{

(/p′ +m)
[
(2p′µ + γµ/k)

2p′k + k2
γ0 − γ0 (2pµ − /kγµ)

2pk − k2

]

×(/p+m)
[
γ0 (2p′ν + /kγν)

2p′k + k2
− (2pν − γν/k)

2pk − k2
γ0

]}
. (7.5.13)

The resulting evaluation is still quite cumbersome in the general case. Sim-
plification occurs in the case of soft photons, when one can expand in k/p
and retain only the leading term, as discussed below. As in Compton scatter-
ing (§7.4) and electron-electron scattering (§7.6), the effect of the medium is
important only in this soft-photon limit.

7.5.5 Bremsstrahlung emission of soft photons

The specific assumption made in the soft-photon approximation is that the
terms involving k in the parentheses in (7.5.13) may be neglected in compar-
ison with the terms involving p. Then (7.5.13) reduces to

wi→f ∝ e∗MµeMν

(
p′µ

p′k
− p

µ

pk

)(
p′ν

p′k
− p

ν

pk

)
1
2Tr
[
(/p′ +m)γ0(/p+m)γ0

]
.

(7.5.14)
The trace reduces to that performed in (7.5.7). The density of final states
factor is

Df =
V d3p′

(2π)3
V d3k

(2π)3
= V 2ω

3|p′|2dε′
(2π)6v′

dω

ω
d2Ωphd

2Ωel, (7.5.15)

where the two solid angles are for the photon and the final electron, respec-
tively. The integral over dε′ is performed over the δ-function. The properties
of the emitted wave quantum appear only in a factor
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RM

ωM

∣∣∣∣eMµ

(
p′µ

p′k
− p

µ

pk

)∣∣∣∣
2

=
RM

ωM

∣∣∣∣ eM · v′

ωM − k · v′ −
eM · v

ωM − k · v

∣∣∣∣
2

, (7.5.16)

where the temporal gauge is chosen. Further simplifications follow from |v′| =
|v|, in accord with the soft-photon approximation, and assuming emission of
transverse waves in an isotropic plasma (or in vacuo), in which case one set
RM = 1

2 and sums over the two transverse polarizations.
The cross section for bremsstrahlung of soft photons is proportional to

that for Mott scattering. One finds

(dσ/d2Ω)soft brems

(dσ/d2Ω)Mott
= −µ0e

2

∫
d3k

(2π)3
1
2ω

(
p′µ

p′k
− p

µ

pk

)(
p′µ
p′k

− pµ

pk

)
. (7.5.17)

The integral over d3k/(2π)3 in (7.5.17) may be evaluated by writing it as
d3k/(2π)3 = dωω2d2Ω/(2π)3, where d2Ω denotes the integral over solid angles
about the direction κ of k. One has

pk = εω(1 − κ · v), p′k = εω(1 − κ · v′). (7.5.18)

Two integrals need to be evaluated. One is∫
d2Ω

1
(1 − κ · v)2

= 4π
( ε
m

)2

, (7.5.19)

with a second integral of the same form with primed quantities. The remaining
integral may be evaluated by using Feynman parameterization:∫

d2Ω
1 − v · v′

(1 − κ · v)(1 − κ · v′)
=
∫
d2Ω

∫ 1

0

dx
1 − v · v′

[1 − xκ · v − (1 − x)κ · v′]2
.

(7.5.20)
On reversing the order of integration, the integral over solid angle reduces to
the same form as the integral in (7.5.19), and the integral over x is straight-
forward. This gives∫

d2Ω
1 − v · v′

(1 − κ · v)(1 − κ · v′)
=

2π(1 − v · v′)
X

ln
∣∣∣∣X + 1 − v · v′

X − 1 + v · v′

∣∣∣∣ , (7.5.21)

with X = [(v−v′)2−(v×v′)2]1/2. On rewriting the integral over wave number
as one over frequency, (7.5.17) reduces to

(dσ/d2Ω)soft brems

(dσ/d2Ω)Mott
=
µ0e

2

4π2

[
1 − v · v′

X
ln
∣∣∣∣X + 1 − v · v′

X − 1 + v · v′

∣∣∣∣− 2
]∫

dω

ω
.

(7.5.22)
The integral is logarithmically divergent and needs to be cut off at ωmax and
ωmin. Simple arguments limit the choice of ωmax and ωmin in (7.5.23). Conser-
vation of energy requires ωmax < ε. The divergence at small ω is unavoidable,
but the infra-red divergences is of no concern in practice. For example, emis-
sion is impossible below the plasma frequency, where transverse waves do not
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exist, and the plasma frequency must be nonzero whenever there are free elec-
trons to emit bremsstrahlung. More generally, the form (7.5.23) is regarded
as a generic form, and the logarithmic term is identified as the Gaunt factor,
whose explicit evaluation is regarded as a separate problem.

Further simplification to (7.5.22) follows for nonrelativistic electrons when
one may expand in powers of X/(1 − v · v′) ≈ 2v sin 1

2χ, where χ is the
scattering angle. The cross section for soft bremsstrahlung is given in terms
of that for Mott scattering by

(dσ/d2Ω)softbrems

(dσ/d2Ω)Mott
=

e2

4πε0

2v2 sin2 1
2χ

3π
ln
ωmax

ωmin
, (7.5.23)
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7.6 Electron-electron scattering

In QED electron-electron scattering is called Møller scattering and electron-
positron scattering is called Bhabha scattering. Plasma dispersion affects these
processes for small momentum transfers, corresponding to small-angle scat-
tering.

7.6.1 Probability for Møller scattering

The Feynman diagrams for scattering of one electron by another electron are
illustrated in Fig. 7.10. The two diagrams in Fig. 7.10 differ by interchange
of the electrons in the final state, and the amplitudes for two diagrams must
have opposite signs. The Feynman amplitude is

iMfi = ie2
[
us′

2
(p′

2)γ
µus2(p2)Dµν(p1 − p′1)us′

1
(p′

1)γ
νus1(p1)

−us′
1
(p′

1)γ
µus2(p2)Dµν(p1 − p′2)us′

2
(p′

2)γ
νus1(p1)

]
, (7.6.1)

where the initial electrons have 4-momenta p1, p2 and spins s1, s2, and the
final electrons have 4-momenta p′1, p

′
2 and spins s′1, s

′
2. An alternative form for

the scattering amplitude is in terms of the vertex formalism:

iTfi = ie2
{[
Γ

ε′2ε2
s′
2s2

(p′
2,p2)

]µ
Dµν(p1 − p′1)

[
Γ

ε′1ε1
s′
1s1

(p′
1,p1)

]ν
−
[
Γ

ε′1ε2
s′
1s2

(p′
1,p2)

]µ
Dµν(p1 − p′2)

[
Γ

ε′2ε1
s′
2s1

(p′
2,p1)

]ν}
, (7.6.2)

which includes all the crossed processes.
For electron-electron scattering, the second terms in (7.6.1) corresponds

to the familiar exchange term in the scattering of identical particles in non-
relativistic quantum mechanics. The two terms, and the interference be-
tween them, are both important for electron-electron scattering. However,
for electron-positron scattering, the two particles are not identical and the
two terms are of qualitatively different nature. In particular, in the nonrela-
tivistic regime, the absence of an exchange interaction implies that electron-
positron scattering is more closely analogous to electron-ion scattering than
to electron-electron scattering.

The transition rate follows from (7.1.2) which reduces to

wi→f = V (2π)4 δ4(p1 + p2 − p′1 − p′2)
|Mfi|2

8ε1ε2ε′1ε
′
2V

4

V d3p′
1

(2π)3
V d3p′

2

(2π)3
, (7.6.3)

with |Mfi|2/8ε1ε2ε′1ε′2V 4 → |Tfi|2 when the form (7.6.1) is used. The prob-
ability for scattering, w(p1,p2; p′

1,p
′
2), may be defined by writing (7.6.3) in

the form

wi→f =
1
V
w(p1,p2; p

′
1,p

′
2) (2π)3 δ3(p1 + p2 − p′

1 − p′
2)
d3p′

1

(2π)3
d3p′

2

(2π)3
. (7.6.4)
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Fig. 7.10. The Feynman diagrams for electron-electron scattering.

Comparison of (7.6.3) and (7.6.4) gives

w(p1,p2; p
′
1,p

′
2) = 2πδ(ε1 + ε2 − ε′1 − ε′2)

|Mfi|2
8ε1ε2ε′1ε

′
2

. (7.6.5)

The probability satisfies the symmetry properties

w(p1,p2; p
′
1,p

′
2) = w(p2,p1; p

′
1,p

′
2) = w(p′

1,p
′
2; p1,p2). (7.6.6)

7.6.2 Dependence on momentum transfer

For some purposes it is more useful to write the probability in terms of the
momentum transfer, denoted by k say. On writing p′1 = p1 + k, conservation
of 4-momentum requires p′2 = p2 − k. The momentum transfer is included
explicitly in (7.6.4) using the identity

(2π)4δ4(p1 +p2−p′1−p′2) =
∫

d4k

(2π)4
(2π)4δ4(p′1−p1−k)(2π)4δ4(p′2−p′2 +k).

(7.6.7)
A probabilityw(p1,p2,k) is defined by implicitly performing the integrals over
d3p′

1, d
3p′

2 in (7.6.4) over the δ functions in (7.6.7), so that (7.6.4) becomes

wi→f =
1
V
w(p1,p2,k)

d3k

(2π)3
. (7.6.8)

Comparison of (7.6.8), (7.6.7) and (7.6.4) gives

w(p1,p2,k) =
∫
dω

2π
2πδ(ε′1 − ε1 − ω)2πδ(ε′2 − ε′2 + ω)

|Mfi|2
8ε1ε2ε′1ε

′
2

, (7.6.9)

with p′
1 = p1 + k, p′

2 = p2 − k implicit.
Explicit evaluation of |Mfi|2 leads to a cumbersome expression for the prob-

ability for Møller scattering in the general case. The calculation is simplified
somewhat when the photon propagator is replaced by its value in vacuo. This
is justified when the momentum transfer is large, specifically when (p1 − p′1)2
and (p1 − p′2)2 in the photon propagators in (7.6.2) are large compared with
the magnitude of µ0Π

µν(k) evaluated at k = p1 − p′1 and k = p1 − p′2, re-
spectively. In the opposite case, when the momentum transfer is small, the
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contribution of the medium to the photon propagator is important, but only
for k = p1 − p′1. In this case the momentum transfer in the exchange term
remains large, and its contribution is small. Thus, for most purposes it suffices
to consider two limiting cases, one in which the dispersion of the plasma is ig-
nored, leading to Møller scattering in vacuo, and one in which the momentum
transfer is assumed small, and the exchange term is ignored.

7.6.3 Kinetic equation for Møller scattering

The kinetic equation for the electrons involved in Møller scattering is obtained
by considering how transitions p1,p2 ↔ p′

1,p
′
2 affect the occupation number

at any one of the four momenta. Using the shorthand notation w12,1′2′ =
w(p1,p2; p′

1,p
′
2) for the probability, and ni = n(pi), n′i = n(p′

i), with i = 1, 2,
for the occupation numbers, the rate of transitions is

w12,1′2′n1n2(1 − n′1)(1 − n′2), w12,1′2′n′1n
′
2(1 − n1)(1 − n2),

respectively. The rate of change of n1, is given by integrating the difference
between these over the three momenta p2,p

′
1,p

′
2. Thus, the kinetic equation

is

Dn(p1)
Dt

=
∫
d3p2

(2π)3
d3p′

1

(2π)3
d3p′

2

(2π)3
w(p1,p2; p

′
1,p

′
2)

×{n(p′
1)n(p

′
2)[1 − n(p1)][1 − n(p2)] − n(p1)n(p2)[1 − n(p′

1)][1 − n(p′
2)]},

(7.6.10)

with D/Dt = ∂/∂t+ v1 · ∂/∂x.
The nonquantum limit of (7.6.10) reproduces the kinetic equation that

corresponds to the collision integral discussed in §5.4. This corresponds to
the nondegenerate case, ni, n

′
i � 1, and small momentum transfers, |k| �

|p1|, |p2|. One expanding in a Taylor series in k, the linear terms in (7.6.10)
vanish, because the probability is even under k → −k to leading order, and
the second-order terms give

Dn(p1)
Dt

=
∫
d3p2

(2π)3
d3k

(2π)3
k · ∂
∂p1

{
w(p1,p2,k)

×
[
n(p2)k · ∂n(p1)

∂p1

− n(p1)k · ∂n(p2)
∂p2

]}
. (7.6.11)

Equation (7.6.11) is equivalent to the collision integral (5.4.2), with the dif-
ferences being only in notation.

7.6.4 Møller scattering in vacuo

For momentum transfers k that are large compared with the plasma frequency,
electron-electron scattering in a plasma is equivalent to Møller scattering in
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vacuo. In this case, it is convenient to describe the scattering in terms of the
invariants introduced in §7.3. The invariants (7.3.2) and the relation (7.3.3)
between them give

s = 2(m2 + p1p2), t = 2(m2 − p1p′1), u = 2(m2 − p1p′2), s+ t+u = 4m2.
(7.6.12)

The cross section for electron-electron scattering follows from (7.6.3) with
(7.3.13), and with I2 = s(s− 4m2)/4. This gives

dσ =
|Mfi|2
16π2

dt

s(s− 4m2)
, (7.6.13)

with Mfi given by (7.6.1), with the photon propagator in vacuo identified as
Dµν(k) = (µ0/k

2)gµν .
For unpolarized electrons one is to average |Mfi|2 over the initial spin states

and sum over the final spin states, which is straightforward but tedious. The
result is well known (e.g., Ref. [3]). The differential cross section (7.6.13)
becomes

dσ =
4πr20m

2

s(s− 4m2)
[
f(t, u) + f(u, t) − 2g(t, u)

]
dt,

f(t, u) =
1

16t2
Fµν(p2, p′2)Fµν(p1, p′1) =

1
2t2
[
s2 + u2 + 8m2(t−m2)

]
,

g(t, u) =
1

16tu
Fµν

µν(p2, p′1, p1, p
′
2) = − 1

2tu
(s− 2m2)(s− 6m2), (7.6.14)

with g(u, t) = g(t, u).
For some purposes it is convenient to choose the center-of-momentum

frame, in which one has

s = 4ε2, t = −4|p|2 sin2 1
2χ, u = −4|p|2 cos2 1

2χ, dt = 2|p|2d cosχ,
(7.6.15)

where χ is the scattering angle. On inserting (7.6.15) into (7.6.14) one obtains
the cross section for Møller scattering

dσ =
πr20(ε2 + |p|2)2m2

2|p|4ε2

×
[

4
sin4 χ

− 3
sin2 χ

+
(

|p|2
ε2 + |p|2

)2 (
1 +

4
sin2 χ

)]
d cosχ. (7.6.16)

The result (7.6.16) simplifies for nonrelativistic and for ultrarelativistic elec-
trons.

In the nonrelativistic limit, ε→ m, |p| � m, the cross-section (7.6.16) for
Møller scattering reduces to

dσ =
πr20m

4

8|p|2

[
1

sin4 1
2χ

+
1

cos4 1
2χ

− 1
sin2 1

2χ cos2 1
2χ

]
d cosχ (7.6.17)
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Fig. 7.11. The Feynman diagrams for electron-positron scattering.

which result may also derived using nonrelativistic quantum mechanics. The
second and third terms in square brackets in (7.6.16) are attributed to the
exchange interaction and to the interference between the normal and exchange
amplitudes, respectively.

The presence of a plasma affects only distant encounters, which corre-
sponds to small scattering angles, χ. The contributions from the exchange
term in (7.6.17) can be neglected, and the terms involving 1/ sin4 1

2χ to
1/[sin2 1

2χ+ 1/2|k|2λ2
D]2.

In the ultrarelativistic limit, the cross-section (7.6.16) simplifies to

dσ =
πr20m

2

2ε2
(3 + cos2 χ)2

sin4 χ
d cosχ, (7.6.18)

which applies for |p| → ε.

7.6.5 Bhabha scattering

Electron-positron scattering is known as Bhabha scattering. The Feynman
diagrams, cf. Fig. 7.11, for electron-positron scattering differ from those for
electron-electron scattering, cf. Fig. 7.10, in that the exchange interaction
involves virtual annihilation and creation processes, which are qualitatively
different from exchange of a photon between two particles.

The cross section for Bhabha scattering in vacuo is related to that for
Møller scattering by a crossing symmetry. Suppose one denotes the 4-momenta
of the initial and final as p+, p′+ and p−, p′− for the electron and positron,
respectively. The identifications p1 → p+, p2 → −p′−, p3 → p′+, p4 → −p− in
(7.3.2) gives

s = (p+ − p′−)2, t = (p+ − p′+)2, u = (p+ + p−)2. (7.6.19)

Bhabha scattering corresponds to the u-channel. The only change in the cross
section is in the invariant I2, cf. (7.3.13), which is I2 = s(s − 4m2)/4 for
Møller scattering and is I2 = u(u− 4m2)/4 for Bhabha scattering. The cross
section (7.6.14) is replaced by

dσ =
µ2

0e
4

u(u− 4m2)
[
f(t, u) + f(u, t) − 2g(t, u)

] dt
4π
, (7.6.20)
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with f(t, u), g(t, u) given by (7.6.14).
In the center-of-momentum frame one has, in place of (7.6.15),

s = −4|p|2 cos2 1
2χ, t = −4|p|2 sin2 1

2χ, u = 4ε2, dt = − 1
π
|p|2d2Ω.

(7.6.21)
A notable change from Møller scattering is for nonrelativistic particles, when
the cross section (7.6.20) reduces to the Mott cross section, cf. (7.5.8),

dσ

d2Ω
=

r20m
4

4|p|4 sin4 1
2χ
. (7.6.22)

As for nonrelativistic electrons, this scattering is due to exchange of virtual
longitudinal photons. Inclusion of the Debye screening leads to modification
of (7.6.22) according to sin2 1

2χ→ sin2 1
2χ+ 1/2|k|2λ2

D, cf. (7.5.9).

7.6.6 Small-angle Møller scattering in a plasma

The dispersive properties of the electron gas affect Møller scattering for small
momentum transfers, when k = p1−p′1 is sufficiently small the exchange term
can be neglected. An explicit expression for the probability (7.6.11) is obtained
by evaluating the modulus squared ofMfi, given by (7.6.1), by averaging over
the initial spins and summed over the final spins:

|Mfi|2 = 4e4Dµν(p1 − p′1)D∗
αβ(p1 − p′1)Fµα(p′2, p2)F

νβ(p′1, p1) (7.6.23)

with

Fµν(P, P ′) = 1
4Tr [γµ(/P +m)γν(/P ′ +m)]

= PµP ′ν + P ′µP ν + (m2 − PP ′)gµν , (7.6.24)

where the trace is evaluated using (6.1.33), (6.1.34). With p1 − p′1 = −k and
kµDµν(k) = 0 = kνDµν(k), one has

D∗
µν(k)Dαβ(k)Fµα(p′2, p2)F

νβ(p′1, p1)

= D∗
µν(k)Dαβ(k)[2pµ

2p
α
2 + gµαkp2][2pν

1p
β
2 − gνβkp1]

≈ 4|pµ
2p

ν
1Dµν(k)|2, (7.6.25)

where the small momentum transfer approximation is made. The probability
(7.6.11) reduces to

w(p1,p2,k) =
∫
dω

2π
2πδ(ω + ε1 − ε′1)2πδ(ω − ε′2 + ε2)

e4|pµ
2p

ν
1Dµν(k)|2

2ε1ε2ε′1ε
′
2

≈
∫
dω

2π
2πδ(ω − k · v1)2πδ(ω − k · v2)

e4|pµ
2p

ν
1Dµν(k)|2

2(ε1ε2)2
. (7.6.26)
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where the approximations ε′1 ≈ ε1+k·v1, ε′2 ≈ ε2−k ·v2 are made. The result
(7.6.26) reproduces the classical derived in §5.4 using the theory of fluctuations
in a plasma. Specifically, apart from differences in notation, the expressions
(7.6.26) and (5.4.15) are equivalent. Thus, in the limit of small-angles, Møller
scattering provides a direct way of deriving the classical collision integral.

7.6.7 Scattering in relativistic degenerate plasma

The scattering cross section decreases with increasing energy, and collisions
in a relativistic thermal plasma are typically unimportant. An exception is in
relativistic degenerate plasmas, which are of interest in connection with the
interiors of compact stars, specifically white dwarf, neutron and quark stars.
Electron-electron scattering in such plasma is important in determining the
transport coefficients, notably viscosity and resistivity. The foregoing theory
is directly relevant to such plasmas.

For this purpose it suffices to use the small-momentum transfer form of the
scattering probability, (7.6.26), and to evaluate it assuming that the plasma
is isotropic, leading to the expression (5.4.24), which corresponds to the prob-
ability

w(p1,p2,k) =
r20m

2

2|k|4 2πδ[k · (v1 − v2)]

×
∣∣∣∣ ω2

ω2 − µ0ΠL(k)
+

k × v1 · k × v2

ω2 − |k|2 − µ0ΠT (k)

∣∣∣∣
2

. (7.6.27)

The longitudinal and transverse response functions are approximated by the
leading terms in an expansion in z = ω/|k|. The appropriate approximation
to the response functions are those for a degenerate electron gas, as given by
(9.3.20). One finds

µ0Π
L(k) ≈ z2

λ2
D

, µ0Π
T (k) ≈ −iπ

4
z

λ2
D

, (7.6.28)

that is, the approximation to the longitudinal response functions is the same
as in the nondegenerate case (5.4.30), and the approximation to the transverse
response is dominated by the imaginary term from Landau damping.

Degeneracy can have a large effect on the scattering. In the completely
degenerate limit, the occupation numbers in the kinetic equation (7.6.10) are
equal to unity below the Fermi momentum and zero above it, so that the
right hand side of (7.6.10) is equal to zero. In the nearly degenerate case, the
scattering is significant only near the Fermi momentum, and may be treated
by expanding in the ratio, T/εF, of the temperature to the Fermi energy. This
effect may be described in terms of a dynamical structure function [4],

S(k) =
∫
d3p1

(2π)3
d3p′

1

(2π)3
n(p1)[1 − n(p′

1)] (2π)
4δ4(p′1 − p1 − k), (7.6.29)
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which they evaluated for a Fermi-Dirac distribution

n(p) =
1

exp[(ε− µe)/T ] + 1
(7.6.30)

in the ultrarelativistic limit µe � m. In the nearly degenerate limit, the
chemical potential is equal to the Fermi energy, µe ≈ εF to lowest order in an
expansion in T/εF. The longitudinal and transverse responses contribute in
the ratio 2 : 1 for energy transfers ωλD � 1, and that the transverse contri-
bution dominates for ωλD � 1. This may be attributed to Debye screening
suppressing the effect of momentum transfers via virtual longitudinal waves
in the latter case.
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8

Responses of a quantum plasma

In this chapter QED is used to calculated the response tensors of a plasma. The
basic ideas used here for including the medium are twofold. First, the propa-
gators in vacuo, identified as vacuum expectation values, are re-interpreted as
expectation values for the medium. In the statistical averages, the electrons
and positrons are described in terms of their occupation numbers, nε

s(p), and
photons in a modeM by their occupation number NM (k). Second, the statis-
tical averages are applied to diagrams with closed loops that represent radia-
tive corrections in QED. In particular, the bubble diagram in QED leads to
the vacuum polarization tensor after regularization, and its statistical average
gives an additional contribution that corresponds to the linear response tensor
for the medium.

Renormalization and regularization of diagrams that lead to radiative cor-
rections in QED are discussed in §8.1. The radiative corrections include the
vacuum polarization, the mass operator and the vertex correction. In §8.2
the statistical average over the medium is introduced, and combined with
the forward-scattering method to derive contributions of the medium to these
radiative corrections, giving the linear polarization tensor and macroscopic
mass renormalization. General forms for linear response tensor are written
down in §8.3. Alternative derivations of the response tensor are discussed in
§8.4. The method is applied to derive nonlinear response tensors in §8.5. In
§8.6 the effects of a photon gas on the response tensor is calculated by replac-
ing the photon in an internal loop in the appropriate diagram by its statistical
average.
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8.1 Renormalization and regularization

Renormalization involves removing essential divergences in QED by redefining
the charge and the mass of the electron to incorporate divergent terms that
arise from low-order closed loop diagrams. In the renormalized theory diver-
gent diagrams are replaced by regularized forms that are finite and are called
radiative corrections. The regularization procedure is discussed in this section.
Particular radiative corrections include the vacuum polarization tensor, the
cubic response tensor for the vacuum, and the mass operator.

8.1.1 Divergent diagrams

In QED there are three classes of divergent diagrams. One class consists of
diagrams with no external lines. The lowest order such diagram consists of
a closed fermion loop with two vertices and a single internal photon line be-
tween them. Such divergent diagrams have have no physical consequences.
Formally they are included in a redefined vacuum, and in practice they are
ignored. A second class of diagrams has infrared divergences: they diverge as
the frequency of a photon approaches zero. Such divergent diagrams appear
in pairs, such that the sum of the two has no divergence. These divergences
are physically important in that the amplitudes can become very large for
sufficiently soft photons. However, the divergences do not present any formal
difficulty because there is always a physically relevant lower limit to the fre-
quency of a photon, e.g., the plasma frequency. The infrared divergences may
be eliminated by redefining the perturbation expansion, so that the canceling
pairs are brought together, but it is of no practical interest to do so.

The third class consist of diagrams that lead to unavoidable infinities. An
internally consistent theory is achieved by renormalization to remove these
divergences. In QED, renormalization involves incorporating the divergences
into a redefined electron mass and a redefined charge. There are three diver-
gent diagrams that must be included in the renormalization procedure: the
vacuum polarization, the electron self-energy, and the vertex correction. Once
the divergences are removed, these diagrams lead to regularized forms that
describe physically observable effects. Two other divergent diagrams are the
triangle and box diagrams. There are two triangle diagrams that differ only
in the direction of the arrow around the triangle cancel exactly: this implies
that the quadratic response of the vacuum is zero. Cancelation occurs for any
pair of closed fermion loop with an odd number of sides (Furry’s theorem).
There are two box diagrams that differ only in the direction of the arrow, and
their amplitudes are equal with the same sign. After this regularization, the
box diagram determine the cubic response tensor of the vacuum.

8.1.2 Vacuum polarization

The vacuum polarization tensor is calculated from the Feynman amplitude
for the bubble diagram, Fig. 8.1. One interprets the photon as spending part
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Fig. 8.1. The Feynman diagram for the vacuum polarization

of its time as a virtual electron-positron pair. It follows that the actual photon
propagator should consist of an infinite sum consisting of the bare or unmodi-
fied photon propagator and propagators containing one, two, three, and so on,
bubble diagrams, as illustrated in Fig. 8.2. In a Feynman diagram a photon
line with 4-momentum k between vertices µ, ν is represented by −iDµν(k).
Let −iDµν

0 (k) represent the bare photon propagator. This infinite sum may
be represented schematically by

−iD = −iD0 + (−iD0) (−iD0) + (−iD0) (−iD0) (−iD0) + · · · ,

where  is the Feynman amplitude of the bubble diagram excluding the ex-
ternal photon lines. The sum gives D = D0 +D0(−i )D, and premultiplying
by D−1

0 and post-multiplying by D−1 gives D−1 = D−1
0 + i .

Consider the definition (2.1.7) of the photon propagator, viz.

Λµ
ν(k)Dνρ(k) = µ0

(
gµρ − k

µkρ

k2

)
, Λµν(k) = k2gµν − kµkν + µ0Π

µν(k),

(8.1.1)
with Dµν

0 (k) defined in the same way with Πµν(k) omitted. Schematically,
(8.1.1) may be written Λ = µ0D

−1, Λ = Λ0 + µ0Π , with Λ0 = µ0D
−1
0 . This

implies D−1 = D−1
0 + Π , leading to the identification Π = i . Thus, on

writing down the Feynman amplitude for the bubble diagram one identifies
the polarization tensor as

Πµν(k) = ie2
∫
d4P

(2π)4
Tr [γµG(P )γνG(P − k)]. (8.1.2)

There are two unacceptable features of the unregularized vacuum polar-
ization tensor (8.1.2). First, it is divergent. Counting powers of P in the in-
tegrand in (8.1.2) suggests that the integral diverges quadratically. Second,
(8.1.2) does not satisfy the charge-continuity and gauge-invariance relations
(1.4.8). An acceptable vacuum polarization tensor must be finite and must
satisfy the charge-continuity and gauge-invariance relations.

The charge-continuity and gauge-invariance conditions are imposed simply
by discarding those terms that are not consistent with these conditions. The
only acceptable form is identified by noting that the tensor indices of the
vacuum polarization tensor can depend only on the metric tensor and the
4-vector kµ, and that the only tensor that can be constructed from these and
that satisfies the charge-continuity and gauge-invariance relations (1.4.8) is
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...

Fig. 8.2. The physical photon propagator (heavy dashed line) is identified in terms
of the bare photon propagator (light dashed line) and the polarization tensor (circle).

gµν − kµkν/k2. Hence an acceptable vacuum polarization tensor must be of
the form

Πµν(k) = Π0(k2)
(
gµν − k

µkν

k2

)
, (8.1.3)

where Π0(k2) is a function of the invariant k2. The tensor (8.1.2) is readily
separated into a part that is of the form (8.1.3), and a part that does not satisfy
the charge-continuity and gauge-invariance relations. One simply discards the
terms not of the form (8.1.3) and ignores them.

The invariant Π0(k2) diverges. One requires that photons in vacuo satisfy
k2 = 0, and to remove the divergence, one subtracts Π0(0) from Π0(k2). A
further subtraction is required to remove a divergence in the first derivative.
It is assumed that divergent term is incorporated into a renormalization fac-
tor for the charge. With the charge interpreted as the renormalized charge
everywhere in the theory, this divergence is eliminated.

It might be remarked that the form (8.1.3) contains both transverse and
longitudinal parts. A separation into longitudinal and transverse parts is frame
dependent. In an arbitrary frame, described by its 4-velocity ũ, the trans-
verse tensor, T µν(k, ũ), and longitudinal tensor, Lµν(k, ũ) are given by (1.6.9),
which implies

gµν − k
µkν

k2
= T µν(k, ũ) +

(kũ)2

k2
Lµν(k, ũ), (8.1.4)

in any specific frame. Hence, the transverse part of the vacuum response tensor
is equal to Π0(k2) in all frames. The longitudinal part of the vacuum response
tensor is equal to (kũ)2Π0(k2)/k2, which is explicitly frame-dependent.

8.1.3 Regularization of the vacuum polarization tensor

The unregularized vacuum polarization tensor (8.1.2) gives

Πµν(k) = 4ie2
∫
d4P

(2π)4
Fµν(P, P − k)

[P 2 −m2 + i0] [(P − k)2 −m2 + i0]
, (8.1.5)

with given Fµν(P, P ′) =µ P ′ν + P ′µP ν + (m2 − PP ′)gµν cf. (7.6.24). On
discarding the terms not of the form (8.1.3), the remaining terms in (7.6.24)
give the unregularized invariant Π0(k2):

Π0(k2) =
4ie2

3

∫
d4P

(2π)4
4m2 − 2P 2 + 2Pk

[P 2 −m2 + i0] [(P − k)2 −m2 + i0]
. (8.1.6)
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A useful trick is to combine the two denominators in (8.1.3) using Feynman
paramterization,

1
ab

=
∫ 1

0

dα
1

[aα+ b(1 − α)]2
, (8.1.7)

and to shift the origin of integration so that the integral becomes an explicit
function of k2. After this step, (8.1.6) is replaced by

Π0(k2) =
4ie2

3

∫
d4P

(2π)4

∫ 1

0

dα
2m2 + k2

[P 2 + α(1 − α)k2 −m2 + i0]2
. (8.1.8)

The next step is a double subtraction:

reg Π0(k2) = Π0(k2) −Π0(0) − k2 ∂Π0(k2)
∂k2

∣∣∣
k2=0

. (8.1.9)

The integrals that appear in (8.1.9) may be combined by introducing new
integrals using

1
αn

− 1
βn

= −
∫ 1

0

dz
n(α− β)

[(α− β)z + β]n+1
. (8.1.10)

The resulting integral is finite, and one may reverse the order of integration
and perform that over d4P . It is convenient to rotate the P 0-axis through π/2
in the complex plane, leaving an integral over the 4-dimensional hypersphere:∫

d4P = iπ2

∫ ∞

0

dxx, (8.1.11)

with x = −P 2. The resulting integrals give

reg Π0(k2) = −e
2k2

2π2

∫ 1

0

dαα(1 − α) ln
[
1 − α(1 − α)k2

m2

]
. (8.1.12)

The remaining integral is straightforwardly provided that the argument of the
logarithm is positive throughout the range of integration, and this is the case
for k2 < 4m2. The integral gives

regΠ0(k2) = −e
2k2

4π2

(
(1 − θ cot θ)(4m2 + 2k2)

3k2
− 1

9

)
, (8.1.13)

with sin2 θ = k2/4m2. For k2 > 4m2 analytic continuation of (8.1.13) gives

reg Π0(k2) = −e
2m2

3π2

[
5
3ζ + 1 − (ζ + 1

2 )
√

1 − 1/ζ ln

(√
1 − 1/ζ + 1√
1 − 1/ζ − 1

)]
,

(8.1.14)
with ζ = k2/4m2.
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8.1.4 Effect of the vacuum polarization on a Coulomb field

The vacuum polarization does not affect the dispersion relation for photons
in vacuo, which is required to be k2 = 0. However, it does effect all other
solutions of Maxwell’s equations. For example, suppose that a specific source
is described by the 4-current Jext(k) and that the solution for the 4-potential
is Aµ

0ext(k) = Dµ
0 ν(k)Jν

ext(k) in the absence of the vacuum polarization. The
solution with the vacuum polarization included is

Aµ
ext(k) = Dµ

ν(k)Jν
ext(k) =

Aµ
0ext(k)

1 + µ0reg Π0(k2)/k2
. (8.1.15)

In most applications the effect of the vacuum polarization is small and it
may be approximated by the limit k2 � 4m2. To lowest order in k2 � 4m2,
(8.1.12) gives

reg Π0(k2) = − e2k4

60π2m2
. (8.1.16)

The modification of the field Aµ
ext(k) due to the vacuum polarization corre-

sponds to multiplying the field Aµ
0ext(k) in the absence of the vacuum polar-

ization by a factor 1 − αfk
2/15πm2.

A notable example of the effect of the vacuum polarization is the Lamb
shift of the energy eigenstates of an electron in a nucleus. Consider the effect of
the vacuum polarization on the Coulomb field, Ze/4πε0r, due to a nucleus of
charge Ze at the origin. For a static field one has k2 = −|k|2, and (8.1.15) with
(8.1.16) implies that the vacuum polarization alters the solution for the field
due to a charge distribution by multiplication by a factor 1 + αf |k|2/15πm2.
Thus the 4-potential in the Coulomb gauge becomes

A0(k) =
1

ε0|k|2

(
1 +

αf |k|2
15πm2

+ · · ·
)

2πδ(ω).

The leading term, ∝ 1/|k|2, corresponds to the Coulomb field, and the first
order correction due to the vacuum polarization gives an additional contribu-
tion that is independent of k. Physically, an electron in an atom sees a nuclear
charge that is effectively larger than the nuclear charge measured by a distant
observer. Speaking loosely, the bare charge becomes partially visible, and the
bare charge is larger (by an infinite amount) than the physical charge.

8.1.5 Cubic response tensor for the vacuum

As already remarked, the triangle diagram corresponds to the quadratic re-
sponse of the vacuum, and although its amplitude diverges, there is an exact
cancelation between two triangle diagrams that differ only in the sense of the
arrow around the closed loop. Hence, the next lowest order response of the
vacuum is the cubic response.
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The cubic response tensor for the vacuum follows from the amplitude for
the box diagram. The full response is symmetric under permutations of the
indices and associated external momenta, k0, k1, k2, k3, say. Thus the response
tensor is of the form

Πµνρσ(k0, k1, k2, k3) = Πµνρσ
1 (k0, k1, k2, k3) +Πµνσρ

1 (k0, k1, k3, k2)
+Πµρνσ

1 (k0, k2, k1, k3) +Πµρσν
1 (k0, k2, k3, k1)

+Πµσνρ
1 (k0, k3, k1, k2) +Πµσρν

1 (k0, k3, k2, k1). (8.1.17)

The six contributions to (8.1.17) correspond to the six orders in which one
can draw the four photon lines around the electron loop. The explicit form
for first term in (8.1.17) is

Πµνρσ
1 (k0, k1, k2, k3) = − ie

4

6

∫
d4P

(2π)4
Tr
[
G(P )γµG(P − k0)γν

×G(P − k0 − k1)γρG(P + k3)γσ
]
, (8.1.18)

which may be written in the form

Πµνρσ
1 (k0, k1, k2, k3) = − ie

4

2

∫
d4P

(2π)4
T µνρσ

1 (P ; k0, k1, k2, k3)
[P ][P − k0][P − k0 − k1][P + k3]

,

(8.1.19)
with [q] = q2 −m2 + i0, and with

T µνρσ
1 (P ; k0, k1, k2, k3) = Tr

[
(/P +m)γµ(/P − /k0 +m)γν

×(/P − /k0 − /k1 +m)γρ(/P + /k3 +m)γσ
]
, (8.1.20)

where k0+k1+k2+k3 = 0 is implicit. The integral in (8.1.19) diverges logarith-
mically, requiring regularization [2]. However, imposing the charge-continuity
and gauge-invariance relations removes the divergent terms. Ignoring these
terms effectively regularizes the tensor trivially [2]. The cubic response of the
vacuum predicts scattering of light by light [3].

An alternative way of regularizing (8.1.19) is to evaluate the discontinuity
across the branch cut, to use the procedure of Cutkovsky [1], and to use
dispersion integrals to reconstruct the entire integral from this discontinuity.
The singularity in the integral occurs where all four denominators vanish, that
is, at

[P ] = 0, [P − k0] = 0, [P − k0 − k1] = 0, [P + k3] = 0. (8.1.21)

Equations (8.1.21) determine the component of the loop 4-momentum, Pµ, in
terms of the external 4-momenta, k0, k1, k3, with k2 = −(k0 + k1 + k3) deter-
mined by conservation of 4-momentum. The numerator in (8.1.19) evaluated
at the solution for Pµ, denoted T̃ µνρσ

1 (k0, k1, k2, k3), no longer depends on P
and so may be taken outside the integral. Applying the dispersion integrals
gives
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Πµνρσ
1 (k0, k1, k2, k3) = −T̃ µνρσ

1 (k0, k1, k2, k3)

× ie
4

2

∫
d4P

(2π)4
1

[P ][P − k0][P − k0 − k1][P + k3]
. (8.1.22)

The remaining integral may be evaluated in terms of dilogarithms.
In most applications, the low-frequency limit of the cubic response tensor

suffices. This is given by the low-frequency limit of the foregoing expression,
but it may be obtained much more simply from the Heisenberg-Euler La-
grangian.

8.1.6 Dimensional restrictions on higher order responses

The triangle and box diagrams describe the quadratic and cubic responses,
respectively, and the next highest order nonlinear responses are described by
the pentagon and hexagon diagrams. For the vacuum the quartic response
associated with the pentagon diagram is zero due Furry’s theorem, and the
next highest response is for the hexagon diagram. These higher order responses
are not usually considered, and they are not discussed in detail here. However,
it is appropriate to comment on a formal point that applies to all the nonlinear
responses, more specifically, to the Feynman amplitudes for all diagrams with
five or more sides: they are subject to a dimensional restriction.

The amplitude for an n-sided diagram involves n 4-momenta: the n − 1
external momenta, k0, . . . , kn with k0+ . . .+kn = 0, plus the loop momentum,
denoted P in (8.1.22). In four dimensions, there is a dimensional restriction
on any five or more 4-momenta that are otherwise independent. One way
of expressing this restriction is that for any n > 4 otherwise independent
4-momenta, p1, . . . , pn say, the Gram determinant,∣∣∣∣∣∣∣∣∣

p21 p1p2 . . . p1pn

p2p1 p22 . . . p2pn

...
...

...
...

pnp1 pnp2 . . . p
2
n

∣∣∣∣∣∣∣∣∣
= 0, (8.1.23)

is of rank four. From any five 4-momenta, one may choose four as independent,
and solve (8.1.23) with n = 5 for the fifth. There are two such solutions.

Consider the amplitude for any closed loop diagram with more than four
sides. The amplitude may be written in a form analogous to (8.1.22), as an
integral over the loop momentum, with a numerator, T µ1...µn(P, k1, . . . , kn)
say, and n denominators that are quadratic functions of the loop momentum,
P . Let the denominators be written in the form [ ]i = [(P−k0−· · ·−ki)−m2],
with [ ]n = [P 2 −m2] due to k0 + · · · + kn = 0. The dimensional restrictions
imply that if one chooses any four of the denominators, [ ]i with i = 0, . . . 3
say, and sets them to zero, one may solve for the loop momentum, P , giving
the two solutions P → P±, say. On may insert these solutions in the remaining
denominators, giving [ ]±j = [(P±−k0−· · ·−kj)−m2] for j = 4, . . . , n, and in
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Fig. 8.3. The Feynman diagram for the self energy of the electron.

the numerator; these factors are independent of P and may be taken outside
the integral. Each choice of four denominators corresponds to a singularity
in the integral. The discontinuity of the integral across the associated cut
is determined from the resonant part of the integral, which correspond to
replacing the product of four denominators by the product of four δ-functions,
δ([ ]i). The argument of Cutkovsky [1] implies that the full integral may be
reconstructed from the resonant part by applying dispersion integrals to the
four chosen denominators. The total integral is found by summing over the ±
solutions, and summing over the contributions from all possible choices of the
four denominators [4, 5]. Thus the amplitude for a diagram with n > 4 sides
can be rewritten as a sum over the amplitudes for all the reduced diagrams
with n − 4 sides removed, with the coefficients for each reduced diagram
determined by the foregoing prescription.

This formal property does not justify neglecting higher order nonlinear
responses, but rather implies the higher order response tensors can be related
to the cubic response tensor. The actual relation between the higher order
response tensors and the cubic response tensor appears not to have been
written down explicitly.

8.1.7 Mass operator

The Feynman amplitude for the electron self energy diagram, Fig. 8.3, follows
from the rules given in §7.1. Comparing this amplitude with that for the
trivial diagram consisting of only an electron line, one find that the self energy
diagram contains an extra factor, referred to as the mass operator,

M(P ) = −ie2
∫

d4k

(2π)4
γµG(P − k)γνDµν(k). (8.1.24)

With G(P ) = (/P +m)/(P 2 −m2 + i0), the Dirac matrices in the numerator
become γµ(/P − /k+m)γν . One expressing this product of Dirac matrices as a
sum of terms involving the 16 basis matrices 1, γµ, iσµν , iγµγ5, γ5, one finds

M(P ) = −ie2
∫

d4k

(2π)4
Pµγν + P νγµ − gµν(/P − /k −m)

(P − k)2 −m2
Dµν(k), (8.1.25)

where the Lorenz gauge, kµDµν(k) = 0 = kνDµν(k), is assumed, and where
terms involving iσµν , iγσγ5 do not contribute.

The mass operator in vacuo must be of the form

M(P ) = A+ (/P −m)B + Mf (P ). (8.1.26)
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+ ++=

=

...

Fig. 8.4. The physical electron propagator (heavy line) is obtained by summing
an infinite series involving the bare propagator (light line) with one, two, etc., self
energy contributions.

In vacuo one is free to choose Dµν(k) = −µ0g
µν/k2, and then one finds that

both A and B are divergent. The linearly divergent term A is a counterpart
of the classically divergent self energy or electromagnetic mass. Classically,
the electromagnetic mass is divergent and it is removed in classical theory
by redefining the physical mass of the electron to include it. In QED the
divergent term A is similarly removed by incorporating it into the physical
mass of the electron. The term B in (8.1.26) cancels in the theory with a
corresponding divergent term from the vertex function, as discussed below in
connection with the Ward identity. After regularizations, there is a finite part
of the mass operator, Mf (P ) say, proportional to (/P −m)2.

The procedure for identifying the renormalized electron propagator is rep-
resented schematically as in Fig. 8.4. Let the renormalized electron propagator
be G(P ) and the bare propagator be G0(P ). The algebraic equivalent of the
schematic sum in Fig. 8.4 is

G = G0 +G0MG0 +G0MG0MG0 + · · · .

Summing the series gives

G(P ) = G0(P ) +G0(P )M(P )G(P ), (8.1.27)

which may be inverted to give

G−1(P ) = G−1
0 (P ) −M(P ). (8.1.28)

In (8.1.28) one has G−1
0 (P ) = /P − m0, where m0 is the bare mass, and

G−1(P ) = /P − m, where m is the physical mass. The term A in (8.1.26) is
incorporated into the physical mass by making the identification m = m0 +A.
The term involving B in (8.1.26) leads to a multiplicative correction to the
propagator, which is canceled by an analogous term from the divergent vertex
function.

8.1.8 Vertex correction and the Ward identity

The diagram Fig. 8.5 is a radiative correction to a vertex. Suppose that in the
absence of the closed loop, the vertex is described by γµ together with the
wavefunctions associated with each of the three external lines. The amplitude
for Fig. 8.5 leads to a vertex correction Γµ(P, P − k) which is to be added to



8.1 Renormalization and regularization 333

p

k

p - k

Fig. 8.5. The vertex correction leads to a divergent contribution that is related to
one of the divergent terms in the self energy through the Ward identity.

γµ, that is, γµ is to be replaced by γµ +Γµ(P, P −k) everywhere. The explicit
form for this vertex correction is

Γµ(P, P − k) = ie2
∫
d4k′

(2π)4
γρG(P − k′)γµG(P − k− k′)γτDρτ (k′). (8.1.29)

The divergence in (8.1.29) is logarithmic and is related to the logarithmically
divergent part of the mass operator in (8.1.26). In fact (8.1.29) reduces to the
form

Γµ(P, P − k) = γµB + Γµ
f (P, P − k), (8.1.30)

where Γµ
f (P, P − k) is convergent. It follows from the Ward identity

∂G−1(P )
∂Pµ

= Γµ(P, P ), (8.1.31)

that the parameter B in (8.1.30) is the same as that in (8.1.26). There is a
cancelation of the renormalization factors involving B from the mass operator
and from the vertex correction.
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8.2 Statistical average over a plasma

In this section a collective medium is introduced into QED by performing sta-
tistical averages over the propagator. Formally the statistical average involves
introducing a density matrix that describes the medium, and the statisti-
cal average is performed over the density matrix. The concept of statistically
averaged propagators is most familiar in the context of ‘thermal’ Green’s func-
tions or propagators, derived by averaging over a thermal distribution. Here
the average is performed for an arbitrary distribution of particles and waves.

8.2.1 Density matrix

The density matrix, ŵ, is defined as the statistical average of the outer product
of the state function for the medium and its adjoint. The total density matrix
factors into contributions from each species of particle and for each wave mode
in the medium. Assuming the density matrix to be diagonal, it is of the form
ŵ = ŵP ŵW, where the subscripts refer to particles and waves, respectively.

Let the particle states be denoted by the set of quantum numbers {εq},
denoted by the ket |εq〉 or the bra 〈εq|. The density matrix for the particles is

ŵP =
∑

q

∏
ε

wεq |εq〉 〈εq|, (8.2.1)

where the product is over all the particles, with only electrons and positrons
(ε = ±1) included explicitly, and where wεq is a probability. Let the waves be
denoted by their modeM and their wave 4-vector k, and described by the ket
|Mk〉 and the corresponding bra 〈Mk|. The density matrix for the photons
involves the product is over all the modes and the integral over the density of
states:

ŵW = V
∫

d3k

(2π)3
∏
M

wM (k) |Mk〉 〈Mk|, (8.2.2)

where wM (k) is the probability of finding a wave in the mode M with wave
vector k.

8.2.2 Statistical averages

The statistical average over any operator K̂ is performed using the density
matrix. If K̂ involves particle operators, one has

K = Tr (K̂ŵ) =
∑
qε

wε
q 〈εq|K̂|εq〉. (8.2.3)

If K̂ involves waves, one has

K = Tr (ŵK̂) = V
∑
M

∫
d3k

(2π)3
wM (k) 〈Mk|K̂|Mk〉, (8.2.4)
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where the sum is over all wave modes.
Consider the statistical averages of a number operator. It is convenient to

write the particle and antiparticle annihilation operators in terms of

âε
q =

{
âq, for ε = +1,

b̂q, for ε = −1,
(8.2.5)

with the corresponding creation operators written in terms of âε†
q . The number

operators are
n̂ε

q = âε†
q â

ε
q, N̂M (k) = ĉ†M (k)ĉM (k), (8.2.6)

for particles and antiparticles, and photons, respectively. The occupation num-
bers are the statistical averages of these operators, given by

nε
q = Tr

[
ŵn̂ε

q

]
, NM (k) = Tr

[
ŵN̂M (k)

]
, (8.2.7)

respectively. The occupation number is interpreted as the average number of
quanta in the state. For fermions there can be only either zero or one particle
in a given state, and this implies that the occupation number must be in the
range 0 ≤ nε

q ≤ 1. There is no such restriction on the occupation numbers for
bosons, including photons.

The requirement that creation and annihilation operators for fermions sat-
isfy anti-commutation, whereas for bosons they satisfy commutation relations,
introduces a sign difference in the statistical average of the outer product of
an annihilation and a creation operator. One has

Tr
[
âε

qâ
ε†
q ŵ
]

= 1 − nε
q, Tr

[
ĉM (k)ĉ†M (k)ŵ

]
= 1 +NM (k), (8.2.8)

for fermions and bosons, respectively.

8.2.3 Statistically averaged propagators

The statistical average of a propagator is obtained by starting from the ex-
pression for the propagator as a vacuum expectation value and replacing this
by the expectation value for the medium. For the electron propagator the
vacuum expectation value (6.5.17) may be rewritten as

G(x, x′) = −iTr
[
ŵV T̂ {Ψ̂(x)Ψ̂ (x′)}

]
, (8.2.9)

where ŵV = | 0 〉 〈 0 | is the density matrix for the vacuum. The statistically
averaged propagator is defined by replacing this density matrix by that for
the relevant medium:

G(x, x′) = −iTr
[
ŵP T̂ {Ψ̂(x)Ψ̂ (x′)}

]
. (8.2.10)

Similarly, the statistically averaged photon propagator is

D
µν

(x, x′) = iTr
[
ŵW T̂ {Âµ(x)Âν (x′)}

]
. (8.2.11)
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On substituting the expressions (6.4.20) for the second-quantized wave-
functions into (8.2.10), one proceeds as in the derivation of the propagator in
vacuo. An important difference between the derivation for the vacuum and
that for a medium occurs in an intermediate step involving the statistical av-
erages over â†q′ âq, b̂q′ b̂†q: these averages vanish in vacuo but are nonzero in a
medium due to (8.2.7). In place of the vacuum values (6.5.11) one finds

G(x, x′) =
∑
εq

∫
dE

2π
e−iE(t−t′)

1
2ε(1 − 2nε

q)
E − ε(εq − i0)

Ψ ε
q(x)Ψ ε

q(x
′), (8.2.12)

which is a general form for the statistically averaged electron propagator. The
statistical averaging affects the resonant part of the propagator but the non-
resonant part is unaffected. This may be seen by evaluating the resonant de-
nominators in (8.2.12) using the Plemelj formula (1.3.22): the principal value
parts involving nε

q cancel. The resonant part of the propagator is modified
by inclusion of an extra factor 1 − 2nε

q in the integrand in (8.2.12) compared
with the vacuum case nε

q = 0. For the particular case of a thermal plasma the
statistically averaged propagator is referred to as a thermal Green’s function.
For thermal fermions with a chemical potential µe, one has

nε
q =

1
e(εq−εe)/T + 1

, 1 − 2nε
q =

e(εq−εe)/T − 1
e(εq−εe)/T + 1

. (8.2.13)

In the more general case the particles are not necessarily thermal, and the
occupation number can have any form, subject to the restriction 0 ≤ nq ≤ 1
for fermions.

8.2.4 Spin dependence of the averaged propagator

The dependence of the propagator on the spin of the particles is only implicit
in the foregoing discussion. Let the electrons and positrons be described by
spin-dependent occupation numbers, nε

s(p), where s = ±1 is the quantum
number for any specific choice of spin operator that commutes with the Dirac
Hamiltonian. The statistically averaged propagator in momentum space for
polarized electrons and positrons is

G(P ) =
∑
ε,s

uε
s(P )ūε

s(P )
2ε

{
℘ 1
P 0 − εε − iπεδ(P

0 − εε) [1 − 2nε
s(εP )]

}
.

(8.2.14)
The sum over the principal value part may be performed explicitly, giving

G(P ) = ℘ /P +m
P 2 −m2

− iπ
2ε

∑
ε,s

δ(P 0− εε) εuε
s(P )ūε

s(P ) [1−2nε
s(εP )]. (8.2.15)

The nonresonant part of the propagator is unaffected by any polarization of
the electron gas. The resonant part describes dissipative processes and these
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are affected by the polarization of the particles. Spin-dependent effects are
discussed in §10.1 and §10.2.

For unpolarized particles, for which nε(p) is independent of the spin,
(8.2.15) has the the more concise form

G(P ) = (/P +m)
(

1
P 2 −m2 + i0

+ i
N(P )
2m

)
,

N(P ) =
∑

ε=±1

2π
m

ε
δ(P 0 − εε)nε(p), (8.2.16)

with P = εp.

8.2.5 Statistically averaged photon propagator

The photon propagator is affected by the presence of waves in the medium.
The statistical average of the propagator in the general form (2.1.12) for an
arbitrary medium has no effect on the nonresonant part. The resonant part is
modified by the statistical averaging by inclusion of a factor 1 + 2NM (k) for
each wave mode. Thus the resonant part becomes

DAµν
M (k) = iπµ0

RM

ωM

[
eµMe

∗ν
M δ(ω − ωM ) + e∗µ

M e
ν
M δ(ω + ωM )

] [
1 + 2NM (k)

]
,

(8.2.17)
where the dependences of RM , eM , ωM on k are implicit. As for the electron
propagator, the photon propagator is defined here for an arbitrary distribu-
tion, which includes the special case of a thermal distribution, when the av-
eraged propagator is referred to as a thermal Green’s function. For a thermal
distribution of photons one has

NM (k) =
1

eωM /T − 1
, 1 + 2NM (k) =

eωM/T + 1
eωM/T − 1

. (8.2.18)

8.2.6 Forward scattering and cuts in closed loops

The statistical average of the amplitude for a Feynman diagram that contains
a closed loop is determined by the statistical average of each of the propagators
corresponding to the lines in the closed loop. The statistical average of a
particle or photon propagator does not affect its nonresonant part, but adds
a contribution from the distribution of particles or waves, respectively, in the
medium. The resonant part of the propagator corresponds to the particle
being on its mass shell (p2 = m2) or the wave satisfying a dispersion relation
(k2 = k2

M ). The internal line is equivalent to two external lines, each with the
same quantum numbers. It is useful to think of a cut in an internal line leading
to it being replaced by two external lines. The resonant part of the uncut
diagram represents the forward-scattering amplitude for the cut diagram.
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Fig. 8.6. (a) A cut in the bubble diagram is indicated by the heavy vertical line).
(b) The resulting cut diagram is equivalent to one of the Feynman diagrams for
Compton scattering for forward scattering, k = k′, p = p′.

This idea is illustrated in Fig. 8.6 for the statistical average of the bubble
diagram, which gives the linear response tensor for a plasma. Topologically, a
cut in one of the internal particle lines separates the bubble diagrams into one
of the two diagrams for Compton scattering, and a cut in the other internal
particle line leads to the other diagram for Compton scattering. The fact that
the initial and final electrons have the same quantum numbers, and the initial
and final photon line has the same 4-momentum, implies that these diagrams
correspond to forward Compton scattering, in which the final state is identical
to the initial state, k′ = k, p′ = p.

8.2.7 Unitarity

The idea of a cut in a closed loop diagram links up with another important
concept in quantum field theory: unitarity. The S-matrix is unitary implying∑

n

SfnS
∗
in = δfi, (8.2.19)

where the sum is over all intermediate states, n. On substituting (6.6.16) into
(8.2.19) one obtains the relation

Tfi − T ∗
fi = i

∑
n

(2π)4δ4(pi − pn)TfnT
∗
in. (8.2.20)

The imaginary part of the forward-scattering amplitude follows by setting
i = f in (8.2.20). This gives

2 ImTii =
∑

n

(2π)4δ4(pi − pn) |Tin|2. (8.2.21)

The imaginary part of the forward-scattering amplitude is related to absorp-
tion and (8.2.21) shows that an absorption process may be decomposed into
a sum over transitions between the state i and various intermediate states n,
followed by transitions from n to f = i.

Consider the implications of unitarity for the bubble diagram. The left
hand side of (8.2.21) corresponds to a resonant part of the amplitude, and
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right had side to the forward-scattering amplitude for Compton scattering.
Cutting the remaining internal electron line separates the original bubble di-
agram into two distinct diagrams, each of which represents a single electron-
photon vertex. The amplitudes for these two diagrams corresponds to that
for Cerenkov emission, Landau damping or one-photon pair creation or anni-
hilation. After a statistical average, an interpretation of (8.2.21) is that the
left hand side represents the imaginary part of the linear response response
tensor, and the right hand side represents the sum over the contributions to
it from Landau damping and pair creation. Unitarity is not used explicitly in
the following discussion, but the idea that the forward-scattering amplitude
can be obtained by cutting a closed loop diagram is central to the method
adopted for calculating the response of a medium.

8.2.8 Linear and nonlinear responses

The foregoing discussion implies that the linear response tensor for a medium
may be obtained from the vacuum polarization tensor by replacing the prop-
agators by their statistical averages over the medium. This gives

Πµν(k) = −ie2
∫
d4P

(2π)4
Tr [γµG(P )γνG(P − k)]. (8.2.22)

There are two contributions, from cutting the two internal lines, and these
correspond to the two terms obtained by taking the resonant part of one
propagator and the nonresonant part of the other propagator. The expression
(8.2.16) for G(P ) separates into a nonresonant part that is the same as in
vacuo, and a resonant part that includes the contributions from the medium,

G(P ) → /P +m
P 2 −m2

+ i
/P +m
2m

N(P ), (8.2.23)

where the resonant part due to the vacuum, i(/P +m)δ(P 2 −m2), is ignored.
The hermitian part of the response tensor for the medium is obtained by
substituting (8.2.23) into (8.2.22) and retaining only the terms that arise from
the resonant part of one propagator and the nonresonant part of the other
propagator. Note that retaining both resonant parts simultaneously does not
give the antihermitian part of the response tensor: the Feynman prescription
for the propagator is acausal, and the antihermitian part is to be obtained
from the hermitian part by imposing the causal condition.

The same prescription applies when determining the quadratic and cu-
bic nonlinear response tensors from the amplitudes for the triangle and box
diagrams, respectively. In the amplitudes for the triangle and box diagrams
one replaces the propagators by their statistical averages, makes the replace-
ment (8.2.23) for each propagator, and retains the terms obtained from the
resonant part of one propagator and the nonresonant parts of the other prop-
agators. The cancelation between the contributions of virtual electrons and
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positrons (Furry’s theorem) for the quadratic response of the vacuum applies
to an electron gas only if the distributions of real electrons and positrons are
identical.

8.2.9 Macrosocpic mass renormalization

The statistical averages of the other diagrams associated with radiative cor-
rections describe further effects associated with a medium. The statistical
average of the mass operator describes macroscopic mass renormalization
(MMR). The mass operator, M(P ), is a Dirac matrix, and it implies that
all components of the 4-momentum are modified in a medium compared with
the vacuum. In a vacuum, the 4-momentum, Pµ, is introduced in a plane
wave solution of Dirac’s equation, and Dirac’s equation implies the dispersion
relation P 2 = m2 for electrons and positrons. When the medium is included,
the dispersion relations are solutions of the more general dispersion equation

det
[
/P −m−M(P ))

]
= 0. (8.2.24)

If MMR is sufficiently small a perturbation treatment suffices: only terms of
first order in M(P ) are retained in (8.2.24). To zeroth order in M(P ) (8.2.24)
gives (P 2 −m2)2 = 0, and the first order corrections to the solutions of this
equation are determined by

P 2 −m2 = 1
4Tr

[
(/P +m)M(P )

]
, (8.2.25)

where (P 2 −m2)(/P +m) is the matrix of cofactors of /P −m. It is tempting
to interpret the left hand side of (8.2.25) in terms of a change in the effective
mass squared, m → meff . However, even to first order in M(P ) the solution
cannot be described by a change in the effective mass alone. Moreover, if
the corrections are not small, it is possible for there to be intrinsically new
solutions of (8.2.24). MMR is discussed further in §10.4.
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8.3 General forms for linear response tensor

A QED calculation of the linear response tensor follows from the statistical
average of the bubble diagram. This general form may be rewritten in a variety
of ways that are useful in different contexts.

8.3.1 Linear response tensor

An expression for the linear response tensor for an unpolarized electron gas
follows from (8.2.22) and (8.2.23). These imply

Πµν(k) =
2e2

m

∫
d4P

(2π)4
Fµν(P, P − k)

[
N(P )

(P − k)2 −m2
+
N(P − k)
P 2 −m2

]
,

(8.3.1)
where N(P ), defined by (8.2.16). Specifically, N(P ) involves the occupation
numbers for electrons (ε = 1) and positrons (ε = −1),

N(P ) =
∑

ε

2πm
ε
δ(P 0 − εε)nε(εP ), (8.3.2)

and is such that
∫
[d4P/(2π)4]N(P ) is equal to the proper number density of

electrons plus positrons. The function Fµν(P, P ′) is defined by (7.2.11) and is
given by

Fµν(P, P ′) = PµP ′ν + P ′µP ν + gµν(m2 − PP ′), (8.3.3)

which satisfies the symmetry properties

Fµν(P, P ′) = Fµν(P ′, P ) = Fµν(−P,−P ′). (8.3.4)

8.3.2 Alternative forms for Πµν(k)

Several alternative forms for the response tensor may be derived from (8.3.1)
by simple manipulations. One alternative form is obtained from (8.3.1) by
shifting the origin of the variable of integration in the final term, so that the
occupation number appears only with argument P . The resulting form is

Πµν(k) =
2e2

m

∫
d4P

(2π)4
N(P )

[
Fµν(P, P − k)
(P − k)2 −m2

+
Fµν(P, P + k)
(P + k)2 −m2

]
. (8.3.5)

The denominators simplify due to the δ-function in (8.3.2), which implies
P 2 = m2, so that one has (P ± k)2 −m2 = k2 ± 2Pk.

Another alternative form is obtained by introducing P ′ = P − k:

Πµν(k) =
2e2

m

∫
d4P

(2π)4
d4P ′

(2π)4
(2π)4δ4(P − P ′ − k)

×Fµν(P, P ′)
[

N(P )
(P − k)2 −m2

+
N(P ′)

(P ′ + k)2 −m2

]
, (8.3.6)
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Due to N(P ) ∝ δ(P 2 −m2) and N(P ′) ∝ δ(P ′2 −m2), the denominators can
be rewritten: (P − k)2 −m2 → −2Pk + k2, (P ′ + k)2 −m2 → 2P ′k + k2.

Yet another form is obtained by shifting the origin of integration by ± 1
2k

so that (8.3.5) becomes

Πµν(k) = −e
2

m

∫
d4P

(2π)4
Fµν(P − 1

2k, P + 1
2k)

Pk
[N(P + 1

2k) −N(P − 1
2k)].

(8.3.7)
Further manipulation using (8.3.3) gives

Πµν(k) = −2e2

m

∫
d4P

(2π)4

{
gµνN(P )

−
PµP ν + 1

4 (k2gµν − kµkν)
Pk

[N(P + 1
2k) −N(P − 1

2k)]
}
, (8.3.8)

where 1
2 [N(P + 1

2k) +N(P − 1
2k)] → N(P ) is replaced by N(P ) in the term

involving gµν by shifting the origin of the integration. The form (8.3.8) shows
that there is always a nonresonant contribution proportional to the proper
number density, npr =

∫
[d4P/(2π)4]N(P ) times gµν . Note that although

the resonant denominator, Pk, in (8.3.8) is superficially the same as in the
nonquantum case, this can be misleading because the terms N(P ± 1

2k) in the
numerator contain δ-functions that imply (P ± 1

2k)
2 = m2, respectively, so

that one has Pk equal to ε(p ± 1
2k) − p · (p ± 1

2k).

8.3.3 Electron and positron contributions

The contributions from the electrons and positrons is implicit in N(P ), and
making them explicit leads to another alternative form. One writes P = εp,
P ′ = ε′p′ and uses the definition (8.3.2) of N(P ). The denominators in (8.3.6)
become −2εpk + k2, 2ε′p′k + k2, respectively. These denominators may be
rewritten using the identities

1
−2εpk + k2

=
∑

ε′=±1

1
2ε′ε′

1
εε− ε′ε′ − ω ,

1
2ε′p′k + k2

= −
∑

ε=±1

1
2εε

1
εε− ε′ε′ − ω . (8.3.9)

The integrals over P 0 and P ′0 in (8.3.6) are performed over δ-functions, giving

Πµν(k) = e2
∑
ε,ε′

∫
d3p

(2π)3
d3p′

(2π)3
(2π)3δ3(εp − ε′p′ − k)

×F
µν(εp, ε′p′)
2εε ε′ε′

εnε(p) − ε′nε′(p′)
ω − εε+ ε′ε′

, (8.3.10)

where (8.3.2) is used with εP = p, ε′P ′ = p′.



8.3 General forms for linear response tensor 343

8.3.4 Charge-symmetric form

The contribution of the positrons is identical in form to the contribution of
the electrons in (8.3.1), in the sense that the response tensor is unchanged by
interchanging the distributions of electrons and positrons. It is convenient to
derive another form that exhibits this feature explicitly. Starting from (8.3.5),
integrating dP 0 over the δ function in (8.3.2), and changing the variable of
integration according to d3P → εd3p, gives

Πµν(k) = 2e2
∫

d3p

(2π)3
∑

ε

nε(p)
ε

[
Fµν(εp, εp− k)
k2 − 2εpk

+
Fµν(εp+ k, εp)
k2 + 2εpk

]
.

(8.3.11)
A form that manifests the property that electrons and positrons contribute
in the same way follows by using the symmetry (8.3.4) to write

Πµν(k) = 2e2
∫

d3p

(2π)3
n̄(p)
ε

[
Fµν(p, p− k)
k2 − 2pk

+
Fµν(p+ k, p)
k2 + 2pk

]
, (8.3.12)

with n̄(p) the sum of the occupation numbers of the electrons and positrons:

n̄(p) = n+(p) + n−(p). (8.3.13)

There is yet another general form for the response tensor that allows one to
identify intrinsically relativistic quantum effects in a transparent way. Com-
bining the two denominators in (8.3.12) gives

Πµν(k) = −2e2
∫

d3p

(2π)3
n̄(p)
ε

(kp)2

(kp)2 − (k2/2)2
aµν(k, p), (8.3.14)

aµν(k, u) = gµν − k
µuν + kνuµ

ku
+
k2uµuν

(ku)2
. (8.3.15)

The form (8.3.14) reduces to the general form for the classical response tensor,
(4.1.1), when the quantum recoil term, −(k2/2)2, is ignored in the denomina-
tor.

8.3.5 Antihermitian part of the response tensor

The antihermitian part of the response tensor describes the dissipative part of
the response, and it may be derived from the hermitian part by imposing the
causal condition. Some care is required in imposing the causal condition on the
various alternative forms: the requirement is that one make the replacement
ω → ω + i0 in the denominator, and the dependence on ω is implicit in
most of the forms. For example, consider the form (8.3.1) in which the two
relevant terms are N(P )/[(P − k)2 − m2] and N(P − k)/[P 2 − m2]. With
N(P ) ∝ δ[P 2 − m2], N(P − k) ∝ δ[(P − k)2 − m2], the two denominators
become ∓2Pk+ k2, respectively. These denominators are quadratic functions
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of ω and they each need to be separated into a sum of terms that are linear
in ω before the resonance condition is imposed. Similarly, consider the form
(8.3.8) in which the denominator is Pk; in this case the transitions are between
P − 1

2k and P + 1
2k, and the terms N(P ± 1

2k) in the numerator requires
(P ± 1

2k)
2 = m2, implying that Pk is an implicit quadratic function of ω.

The required ω-dependence is explicit in the form (8.3.10), whose antiher-
mitian part is

ΠAµν(k) = iπe2
∑
ε,ε′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δ3(ε′p′ − εp + k)

Fµν(εp, ε′p′)
εε ε′ε′

×[12 (ε′ − ε) + εnε(p) − ε′nε′(p′)] δ(ε′ε′ − εε+ ω), (8.3.16)

where the vacuum polarization term is included through the term 1
2 (ε′ − ε).

The dissipative processes described by (8.3.16) are identified below by con-
sidering conservation of 4-momentum in the emission process. The processes
are Landau damping (LD) by electrons, corresponding to ε = ε′ = 1, LD by
positrons, corresponding to ε = ε′ = −1, and one-photon pair creations (PC),
corresponding to ε = −ε′.

The sign of the terms that describes PC in (8.3.16) is opposite to the sign
for LD, and suggests that the contribution of the electrons and positrons in
the medium to this form of absorption is negative. This is the case. However,
one needs to combine these PC terms with the vacuum contribution to PC.
The vacuum term in (8.3.16) leads to PC in the absence of any particles, and
the presence of electrons or positrons suppresses PC relative to a vacuum.
This is due to the Pauli exclusion principle: if a possible state for the electron
or positrons produced in the PC is occupied, the process cannot proceed. The
occupation number is the probability of the state being occupied, and the
factors 1− n+(p)− n−(k − p) or 1− n−(k − p′)− n+(k − p) are interpreted
as suppression factors for PC compared with unity for the vacuum.

8.3.6 Resonance conditions

The resonant denominators in the various forms of the response tensor can
be interpreted in terms of the condition for conservation of 4-momentum in
emission and absorption processes. In the nonrelativistic, nonquantum the-
ory the only resonance condition is the Cerenkov condition ωε − p · k = 0.
The relativistic quantum resonance condition includes a generalization of the
Cerenkov condition by including the quantum recoil, which is different for
emission and absorption. The relativistic quantum resonance condition also
includes the resonance condition for PC.

The relativistic quantum resonance condition follows from conservation of
4-momentum. Consider transitions between states denoted P and P ′ = P −k,
with P = εp, P ′ = ε′p′. For an electron, ε = ε′ = 1, this corresponds to
emission p→ p′ = p−k or absorption p−k→ p. For a positron, ε = ε′ = −1, it
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corresponds to emission p′ → p = p′−k or absorption p′−k→ p′. One-photon
pair creation corresponds to a resonance with ε = 1, ε′ = −1, k → p + p′,
p′ = k − p, and one-photon pair annihilation corresponds to p + p′ → k.
Conservation of 4-momentum for any of these processes can be expressed by
the single condition

εp− ε′p′ − k = 0. (8.3.17)

The resonance condition follows from (8.3.17) and the requirement that the
particles be on their mass shell, p2 = m2, p′2 = m2.

The form (8.3.6) for the response tensor may be interpreted in terms of
such transitions, that is, transitions between states with occupation numbers
N(P ) and N(P ′), with P ′ = P − k. These correspond to poles at

εpk = −k2/2, ε′p′k = k2/2, (8.3.18)

which follow from (8.3.17) and p2 = m2, p′2 = m2. The conditions (8.3.18)
are equivalent to four resonances, at

εε− ε′ε′ − ω = 0, (8.3.19)

with ε = ±1, ε′ = ±1. The resonances at (8.3.19) correspond to resonances
implied by the δ-function in the antihermitian part of the response tensor
(8.3.16). The resonances (8.3.18) may also be written in the forms

ω − k · v = −ω
2 − |k|2
2εε

, ω − k · v′ =
ω2 − |k|2

2ε′ε′
, (8.3.20)

with v′ = p′/ε′.

8.3.7 Quantum recoil

The quantum recoil is the correction (of order h̄) to the classical resonance
condition. An important qualitative point concerns the difference between
relativistic and nonrelativistic treatments. The nonrelativistic limit for the
recoil follows by setting εε → m in the first of (8.3.20). However, a nonrela-
tivistic derivation of the recoil leads to a different result. In a nonrelativistic
treatment, the energy is identified as E = p2/2m before emission and as
E′ = p′2/2m after emission, with p′ = p−k. Energy conservation in the form
E′ = E − ω leads to a resonance condition

ω − k · v =
|k|2
2m
,

which differs from the nonrelativistic limit of (8.3.20) in that ω2 − |k|2 is
replaced by −|k|2 in the recoil term. In particular, for ω2 > |k|2, the nonrel-
ativistic treatment leads to the wrong sign for the recoil term.

From a formal point of view, the nonrelativistic limit corresponds to setting
the speed of light equal to infinity. The apparent inconsistency in the resonance
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condition derived nonrelativistically and that derived as the nonrelativistic
limit of (8.3.20) may be resolved by reverting to ordinary units and formally
taking the limit c→ ∞. The first of (8.3.20) with ε = 1 becomes (in ordinary
units)

ω − k · v = − h̄(ω
2 − |k|2c2)
2mc2

(
1 − |v|2

c2

)1/2

,

and on taking the limit c → ∞ one obtains the result derived using nonrela-
tivistic theory. The inconsistency arises because one cannot set c→ ∞ when
discussing electromagnetic radiation.

8.3.8 Solutions of the resonance conditions

One can determine the resonant values for the energy and the momentum
component along k from (8.3.18). Consider εpk = k2/2, which corresponds to

ωε− p‖|k| = 1
2ε(ω

2 − |k|2), p‖ =
p · k
|k| = |p| cos θ. (8.3.21)

Writing ε = (m2 + p2⊥ + p2‖)
1/2, (8.3.21) implies

(εp‖ − 1
2 |k|)2
A

+
p2⊥
B

= 1,

A =
(ω2 − |k|2 − 4m2)

4(ω2 − |k|2) , B =
ω2 − |k|2 − 4m2

4
. (8.3.22)

Writing the solutions of (8.3.22) as εp‖ = p‖±, εε = ε±, one finds

p‖± = 1
2 |k| ±

1
2ω

(
ω2 − |k|2 − 4ε2⊥
ω2 − |k|2

)1/2

,

ε± = 1
2ω ± 1

2 |k|
(
ω2 − |k|2 − 4ε2⊥
ω2 − |k|2

)1/2

. (8.3.23)

The solutions of ε′p′k = −k2/2 consistent with (8.3.23) and εp− ε′p′ − k = 0
are ε′p′‖ = p′‖±, ε′ε′ = ε′±, with

p′‖± = − 1
2 |k| ±

1
2ω

(
ω2 − |k|2 − 4ε2⊥
ω2 − |k|2

)1/2

,

ε′± = − 1
2ω ± 1

2 |k|
(
ω2 − |k|2 − 4ε2⊥
ω2 − |k|2

)1/2

, (8.3.24)

with p′‖ = p′ · k/|k| = |p′| cos θ′.
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Fig. 8.7. The regions where dissipation occurs in ω-|k| are shown: Landau damping
occurs in the region to the right of the light line ω = |k|, and one-photon pair
creation occurs in the region above the curved line. In the region between these
lines there is no dissipation.

8.3.9 Allowed resonances

For given ω, |k| the allowed resonances correspond to real values of the solu-
tions p‖±, ε±. By inspection of (8.3.22), real solutions exist for ω2 < |k|2 and
for ω2 − |k|2 > 4m2, and these correspond to Landau damping (LD) and pair
creation (PC), respectively. The value of p2⊥ poses no restriction on LD, and
it restricts PC to the range 4m2 < ω2 − |k|2 < 4ε2⊥. No resonance is allowed
in the dissipation-free region 0 < ω2 − |k|2 < 4m2, where the square root
in (8.3.23) and (8.3.24) leads to complex solutions. These three regions are
illustrated in Fig. 8.7.

When considering LD, the requirement ω2 < |k|2 implies that there exists
an inertial frame in which the wave has zero frequency. Let us denote values
in this frame by a tilde, so that (8.3.23) implies p̃± = 1

2 |k̃|, ε̃± = ±(ε̃2⊥ +
|k̃|2/4)1/2. Then εε̃ = ±(ε̃2⊥ + |k̃|2/4)1/2 can be satisfied only for the solution
in which the ± corresponds to the sign ε. This result also applies in any other
frame, and hence only the solution ± → ε is acceptable for LD in any frame.
For ε = ε′ = 1, the allowed resonance corresponds to LD by an electron. For
given ω, |k|, electrons with given p⊥ and with p‖ = p‖+, ε = ε+ emit a photon
and jump to p‖ = p′‖+, ε = ε′+, and electrons with p‖ = p′‖+, ε = ε′+ absorb a
photon and jump to p‖ = p‖+, ε = ε+. For ε = ε′ = −1, the allowed resonance
corresponds to LD by a positron. For given ω, |k|, positrons with given p⊥
and with p‖ = −p′‖−, ε = −ε′− emit a photon and jump to p‖ = −p‖−,
ε = −ε−, and positrons with p‖ = −p‖−, ε = −ε− absorb a photon and jump
to p‖ = −p′‖−, ε = −ε′−. Inspection of (8.3.23) and (8.3.24) shows that these
kinematic conditions are the same for electrons and positrons; specifically, one
has −p′‖− = p‖+ and −ε− = ε+.
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When considering PC, the requirement ω2 > |k|2 implies that there exists
an inertial frame in which the wave has k = 0. Let us denote values in this
frame by a tilde, so that (8.3.23) implies p̃± = ± 1

2 (ω̃2 − 4ε̃2⊥)1/2, ε̃± = 1
2 ω̃.

It follows that either both or neither solutions are allowed in this frame, and
hence both or neither are allowed in any frame. For ε = 1, ε′ = −1, the allowed
resonance corresponds to PC. The solutions correspond to a photon decaying
into an electron with p‖ = p‖+, ε = ε+ and a positron with p‖ = −p′‖+, ε =
−ε′+, or into an electron with p‖ = p‖−, ε = ε− and a positron with p‖ = −p′‖−,
ε = −ε′−. The identities −p′‖± = p‖∓ and −ε± = ε∓ imply that the photon
decays into an electron and a positron with p‖ = p‖±, ε = ε±, with the two
solutions corresponding to interchanging the electron and the positron. For
ε = −1, ε′ = +1, resonance would require a photon with a negative frequency,
ω < 0; such negative energy waves exist only under conditions that are quite
different from those relevant to PC.
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8.4 Wigner matrix and density matrix approaches

Two alternative approaches for calculating the response of a relativistic quan-
tum electron gas are described in this section: the Wigner matrix and density
matrix approaches. The S-matrix approach, used above, is based on the inter-
action picture; in contrast, these two alternatives are based on the Schrödinger
and Heisenberg pictures, respectively. The Schrödinger picture is implicit in
the use of the Wigner function in nonrelativistic quantum statistical mechan-
ics, and the generalization to Dirac theory leads to a Wigner matrix. Intro-
ducing a covariant form for the Wigner matrix allows a derivation of the
response tensors that is analogous to the Vlasov approach in classical the-
ory. The Wigner matrix is also used to generalize the theory of fluctuations
to a relativistic quantum plasma. The method based the Heisenberg picture
involves an expansion of the density matrix in powers of the EM field.

8.4.1 Quasi-probability distribution

The Vlasov approach in the classical kinetic theory of plasmas involves de-
scribing the distribution of particles in terms of a distribution function in the
6-dimensional phase space. The distribution function may be interpreted as a
probability of finding a particle in a particular region of phase space. In a quan-
tum mechanical treatment, the orbit of a particle is not well-defined, and there
is a quantum mechanical uncertainty as well as the statistical uncertainty in
any probabilistic description. In a relativistic quantum treatment, the wave-
function describes a single-charge system, rather than a single-particle system,
and this effectively precludes a direct counterpart of the probability distribu-
tion for classical particles. However, one can define a quasi-probability func-
tion that reduces to the classical distribution function in the classical limit,
and that allows a Vlasov-like treatment for a quantum plasma. This func-
tion is called the Wigner function, following Ref. [6], or the quasi-probability
distribution. The covariant counterpart of the Wigner function for Dirac wave-
functions is a Dirac matrix [7, 8, 9, 10], and is referred to here as the Wigner
matrix.

The Wigner function for a one-dimensional wavefunction, φ(x), is defined
by

f(x, p) =
∫
dy eipy 〈φ(x− 1

2y)φ
∗(x+ 1

2y)〉 =
∫
dy e−ipy 〈φ(x+ 1

2y)φ
∗(x− 1

2y)〉,
(8.4.1)

where the angular brackets denote a statistical average. The Schrödinger equa-
tion is used to derive an equation for the evolution of f(x, p). It is this equa-
tion that may be reinterpreted as a Vlasov-like equation. The Wigner function
(8.4.1) is analogous to a single-paritlcle distribution function in the sense that
it may be interpreted as a quasi-probability distribution function for finding
a particle in the range dxdp of phase space (for a 1D particle). It is referred
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to as a ‘quasi-probability’ function because it is not strictly positive. Here we
are concerned with a covariant generalization of (8.4.1) for the Dirac wave-
function.

8.4.2 Covariant Wigner matrix

On interpreting Ψ(x) as the Dirac wavefunction, with x = [t,x] a 4-vector, an
appropriate generalization of (8.4.2) is the Wigner matrix

[F (x, P )]ab =
∫
d4y e−iPy 〈[Ψ(x− 1

2y)]
a[Ψ(x+ 1

2y)]b〉. (8.4.2)

where Ψ(x) is the Dirac wavefunction, and Ψ(x) is its Dirac adjoint. With
the definition (8.4.2), F (x, P ) is a 4 × 4 Dirac matrix; to emphasize spinor
indices are added, with the raised index labeling rows and the lowered index
labeling columns. The Wigner matrix is a relativistic quantum counterpart of
the classical covariant distribution function, which satisfies the covariant form
(3.5.8) of the Vlasov equation. To use the Wigner matrix in an analogous way
to the classical distribution function, it is necessary to identify a counterpart
of the Vlasov equation. Such an equation must be derived from the Dirac
equation and its adjoint. This is not straightforward, as is evident from the
following.

The Dirac equation and its adjoint evaluated at x ∓ 1
2y, respectively, are

(setting q = −e)

i∂µ[γµΨ(x− 1
2y)] −mΨ(x− 1

2y) = −e/A(x− 1
2y)Ψ(x− 1

2y), (8.4.3)

i∂µ[Ψ(x+ 1
2y)γ

µ] +mΨ(x+ 1
2y) = e/A(x+ 1

2y)Ψ(x+ 1
2y), (8.4.4)

where the matrix indices are implicit. Due to the factor γµ on the left hand
side of these equations, they cannot be used directly to find how the Wigner
matrix evolves. They lead to equations that involve an additional Wigner
matrix that differs from (8.4.2) through the inclusion of an extra factor γµ.
An alternative pair of equations is obtained by pre-multiplying (8.4.3) by γν ,
post-multiplying (8.4.4) by γν , and using γµγν = gµν + σµν . This gives

i∂νΨ(x− 1
2y) − i∂µ[σµνΨ(x− 1

2y)] −mγ
νΨ(x− 1

2y) =
−e(gµν − σµν)Aµ(x − 1

2y)Ψ(x− 1
2y), (8.4.5)

i∂νΨ(x+ 1
2y) + i∂µ[Ψ(x+ 1

2y)σ
µν ] +mΨ(x+ 1

2y)γ
ν =

eAµ(x + 1
2y)Ψ(x+ 1

2y)(g
µν + σµν). (8.4.6)

On applying the operation i∂ν to (8.4.2) and using (8.4.5), (8.4.6), one ob-
tains an equation for the evolution of [F (x, P )]ab. However, this introduces
an additional Wigner matrix that differs from (8.4.2) through the inclusion
of an extra factor σµν . To obtain closure, one needs to relate these additional
Wigner matrices to [F (x, P )]ab.
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8.4.3 Basis set of covariant Wigner functions

One way of proceeding is to express the Wigner matrix in terms of Wigner
functions that are the coefficients of an expansion of the matrix in terms
of a set of basis matrices. The set of 16 independent matrices (6.1.29) is
γA = [1, γµ, iσµν , iγµγ5, γ5]. The expansion of the Wigner matrix in this set
gives

[F (x, P )]ab =
∑
A

FA(x, P )[γA]ab, FA(x, P ) = 1
4 [F (x, P )]ab[γA]ba,

(8.4.7)
where the FA(x, P ) are functions rather than matrices, and where one has
[F (x, P )]ab[γA]ba = Tr[F (x, P )γA].

Each of the FA(x, P ) satisfies two equations

i∂µF
A(x, P ) =

∫
d4y e−iPy 〈1

4Tr [γA[i∂µΨ(x− 1
2y)]Ψ(x+ 1

2y)

+Ψ(x− 1
2y)[i∂µΨ(x+ 1

2y)]γ
A]〉, (8.4.8)

2PµFA(x, P ) =
∫
d4y e−iPy 〈1

4Tr [γA[i∂µΨ(x− 1
2y)]Ψ(x + 1

2y)

−Ψ(x− 1
2y)[i∂

µΨ(x+ 1
2y)]γ

A]〉, (8.4.9)

where a partial integration is performed in deriving (8.4.9). The Dirac equation
and its adjoint allow one to evaluate the right hand sides of (8.4.8), (8.4.9).

In the absence of the fluctuating electromagnetic field, let the Wigner ma-
trix be denoted F̄ (P ), and let the corresponding Wigner functions be denoted
F̄A(P ). Then (8.4.9) has a solution

F̄µ(P ) =
Pµ

m
F̄I(P ), F̄µν(P ) = 0. (8.4.10)

The remaining Wigner functions (involving γ5) are independent of the com-
ponents in (8.4.10), and one is free to choose them to be zero, which is the
case for unpolarized particles.

The Wigner function F̄I(P ) is identified from the 4-current,

Jµ(x) = −e〈Ψ(x)γµΨ(x)〉 = −e
∫
d4P

(2π)4
Fµ(x, P ). (8.4.11)

In the absence of fluctuations the current corresponds to Fµ(x, P ) →
PµN(P )/m in (8.4.11), and this implies the relation between the Wigner
function and the occupation number:

F̄I(P ) = N(P ). (8.4.12)

The Wigner matrix becomes
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[F̄ (P )]ab =
/P a

b +mδab

m
N(P ). (8.4.13)

The combination /P +m is characteristic of a sum over spin states, consistent
with the assumption that the electrons are unpolarized.

8.4.4 First order Wigner functions

To first order in A(k) let the Wigner matrix be written

[F̄ (P )]ab =
/P a

b +mδab

m
N(P ) +

∫
d4k

(2π)4
e−ikx [F (k, P )]ab + · · · , (8.4.14)

where F (k, P ) is assumed to be a linear function of the 4-potential A(k)
and + · · · denotes higher order terms in A(k). The Fourier transforms of the
Wigner functions (8.4.7) give the first order terms

FA(k, P ) = 1
4 [F (k, P )]ab[γA]ba. (8.4.15)

Only the terms corresponding to γA = 1, γµ, iσµν contribute for unpolarized
electrons. Using (8.4.8), (8.4.9) and noting that Fµν(k, P ) is proportional to
−i[kµAµ(k) − kνAµ(k)], which is the Maxwell tensor (1.4.1), the first order
terms are

FI(k, P ) =
e

Pk
PA(k) [N+ −N−],

Fµ(k, P ) =
e

m

{
gµν [N+ +N−]

+2
Pµ P ν + 1

4 (k2gµν − kµkν)
Pk

[N+ −N−]
}
Aν(k),

Fµν(k, P ) = i
e

2Pk
{kµAµ(k) − kνAµ(k)} [N+ −N−], (8.4.16)

with N± = N(P ± 1
2k). The first order Wigner matrix is

[F (k, P )]ab = FI(k, P ) δab + Fµ(k, P ) [γµ]ab + iFµν(k, P ) [σµν ]ab. (8.4.17)

8.4.5 Linear response tensor from the Wigner matrix

The linear response tensor is identified from the the first order 4-current den-
sity. After Fourier transforming (8.4.11) one inserts the expression (8.4.17) for
Fµ(k, P ) into

Jµ(k) = −e
∫
d4P

(2π)4
Fµ(k, P ) = Πµν(k)Aν(k). (8.4.18)

The resulting expression for the response tensor reproduces (8.3.8), that is,
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Πµν(k) = −2e2

m

∫
d4P

(2π)4

{
gµνN(P )

+
PµP ν + 1

4 (k2gµν − kµkν)
Pk

[N(P + 1
2k) −N(P − 1

2k)]
}
. (8.4.19)

It follows that the Wigner-matrix derivation reproduces the result derived
using the S-matrix approach.

8.4.6 Fluctuations in a quantum plasma

Fluctuations in a nonquantum plasma are discussed in §5.4. In the classical
case, the underlying idea is that random fluctuations in the distribution func-
tion are Poissonian in that they have a variance equal to their mean, expressed
by the relation (3.5.20). Fluctuations in a quantum plasma are not Poissonian:
bosons appear to bunch (the variance is greater than the mean), and fermions
appear to anitbunch (the variance is less than the mean). The theory of fluc-
tuations in nonrelativistic quantum plasmas was reviewd by Sitenko [11], and
the theory of fluctuations in relativistic quantum electron gas, discussed here,
was reviewed by Sivak [8].

The form of the fluctuations in the occupation number in a nonrelativistic
quantum theory for fermions can be inferred from the following argument
based on quantized fields. Let the creation and annihilation operators for a
fermion state q be â†q, âq, and let the statistical average over the medium be
denoted by angular brackets. One has

〈â†qâq′〉 = nqδqq′ , 〈âq′ â†q〉 = (1 − nq)δqq′ , (8.4.20)

where nq is the occupation number. Statistical fluctuations lead to nq(x) vary-
ing in space and time. The mean level of these fluctuations is determined by
the autocorrelation function of δnq(x) = nq(x) − n̄q, with the average occu-
pation number given by nq → n̄q in (8.4.20). The autocorrelation function
can be expressed as the average over two pairs of creation and annihilation
operators, 〈â†q1

âq′
1
â†q2
âq′

2
〉. Ignoring any intrinsic correlation, as in the classical

case discussed in §3.5 and §5.4, implies that this average separates into the
sum of all possible averages of pairs of operators:

〈â†q1
âq′

1
â†q2
âq′

2
〉 = 〈â†q1

âq′
1
〉〈â†q2

âq′
2
〉 − 〈â†q1

â†q2
〉〈âq′

1
âq′

2
〉 + 〈â†q1

âq′
2
〉〈âq′

1
â†q2

〉,
(8.4.21)

where the signs are determined by anticommutation relations. The middle
term in (8.4.21) involves the averages of a pair of creation operators and
a pair of annihilation operators, both of which are zero. In the correlation
function for the fluctuations in the occupation number, 〈δnq(x) δnq′ (x′)〉 =
〈nq(x)nq′ (x′)〉− n̄qn̄q′ , the first term on the right hand side of (8.4.21) cancels
with the term n̄qn̄q′ . Thus the final term in (8.4.21) determines the form of
the correlation function for the purely statistical fluctuations: it is propor-
tion to nq1(1 − nq2)δq1q′

2
δq2q′

1
. The term 1 − nq2 is replaced by unity in the
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nondegenerate limit, and it is the inclusion of this term that distinguishes
the antibunching effect in Fermi-Dirac statistics compared with the Maxwell-
Boltzmann case.

Another notable difference between the classical and quantum theories of
fluctuations is that the correlation involves two different states related by
emission or absorption of a quantum. Consider the Fourier transform of the
correlation function 〈δnq(x) δnq′ (x′)〉 for free particles, q → p, s and q′ →
p′, s′. The correlation is nonzero only for p′ = p − k and ε′ = ε − ω. The
classical resonance condition, ku = 0, that appears in a δ-function is the
classical correlation function (3.5.20), is replaced by a δ-function expressing
ε′ − ε+ ω = 0 in the quantum case.

8.4.7 Fluctuations in the Wigner matrix

Fluctuations in a relativistic quantum gas may be described by the autocor-
relation function for the Wigner matrix. By analogy with the classical case
(3.5.20), let δF (k, P ) be the Fourier transform of the fluctuating part of the
Wigner matrix, and consider the correlation function 〈δF (k, P ) δF (k′, P ′)〉,
which is the outer product of two 4 × 4 matrices. The specific form for this
correlation function is [8]

〈[δF (k, P )]ab [δF (k′, P ′)]cd〉 = (2π)4δ4(k + k′) (2π)4δ4(P − P ′)
×[F̄ (P + 1

2k)]
a

d [tF̄ (P − 1
2k)]

c
b. (8.4.22)

with [F̄ (P )]ab = (/P a
b +mδab)N(P )/m from (8.4.13), and with

[tF̄ (P )]ab =
/P a

b +mδab

m
[S(P ) −N(P )], S(P ) = 4πmδ(P 2 −m2),

(8.4.23)
where the definition of S(P ) is similar to the definition (8.3.2) for N(P ), with
the occupation numbers replaced by unity.

The classical counterpart, (3.5.20), of (8.4.22) is reproduced as follows.
First, project onto the Wigner function FI , such that (8.4.22) gives

〈δFI(k, P ) δFI(k′, P ′)〉 = (2π)4δ4(k + k′) (2π)4δ4(P − P ′)
×N(P + 1

2k) [S(P − 1
2k) −N(P − 1

2k)]. (8.4.24)

On the left hand side δFI is identified as the fluctuation in the classical
distribution function. On the right hand side, the term N(P − 1

2k) is ne-
glected in comparison with S(P − 1

2k). The δ-function in N(P + 1
2k) implies

S(P − 1
2k) = 4πmδ(2Pk), which reduces to the classical counterpart 2πδ(ku)

in (3.5.20). Then N(P + 1
2k), S(P − 1

2k) are approximated by N(P ), S(P ),
respectively, and apart from notational changes, (3.5.20) is reproduced. Note
that, despite appearances, the quantum form 4πmδ(2kP ) that appears is not
equal to the analogous δ(ku) in the classical counterpart (3.5.20); that appar-
ent equality is deceptive because the resonance at kP = 0 is for transitions
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P + 1
2k ↔ P − 1

2k, and it includes the quantum recoil implicitly. For transi-
tions P ↔ P −k, this resonance condition is replaced by kP − 1

2k
2 = 0, where

the quantum recoil appears explicitly.

8.4.8 Fluctuations in the 4-current

Electromagnetic fluctuations in a quantum plasma may be treated by analogy
with fluctuations in a classical plasma (§5.4) simply by replacing the correla-
tion function for the 4-current, (3.5.23), in the classical case by its quantum
counterpart. The autocorrelation function for the 4-current 〈δJ δJ〉µν follows
from the counterpart of (8.4.24) for 〈δFµ(k, P ) δF ν(k′, P ′)〉, which is obtained
from (8.4.22) by contracting with [γµ]ba [γν ]dc. The combination of matrices
that appears on the right hand side may be written Tr [γµ(/P++m)γν(/P−+m)],
Pµ
± = Pµ ± kµ, and this trace is the same as that evaluated in (8.4.19). One

finds

〈δFµ(k, P ) δF ν(k′, P ′)〉 = (2π)4δ4(k + k′) (2π)4δ4(P − P ′) [2PµP ν

+ 1
2 (k2gµν − kµkν)]N(P + 1

2k) [S(P − 1
2k) −N(P − 1

2k)]. (8.4.25)

The counterpart of the autocorrelation function (5.4.6) for fluctuations in the
4-current in a classical plasma becomes

〈δJ δJ∗〉µν(k) = e2
∫
d4P

(2π)4
[2PµP ν + 1

2 (k2gµν − kµkν)]

×N(P + 1
2k) [S(P − 1

2k) −N(P − 1
2k)]. (8.4.26)

A shift in origin for the variable of integration gives

〈δJ δJ∗〉µν(k) = e2
∫
d4P

(2π)4
[2PµP ν − Pµkν − kµP ν + 1

2k
2gµν ]

×N(P ) [S(P − k) −N(P − k)]. (8.4.27)

8.4.9 Kubo’s formula

The level of fluctuations in a thermal plasma is determined by the tempera-
ture, and this implies a relation between the source of fluctuations through
random currents and dissipation. In the non-quantum case, the implies re-
lation is referred to as the fluctuation-dissipation theorem: it implies that
the autocorrelation function for fluctuations in the current is proportional to
the antihermitian part of the linear response tensor in a thermal plasma. The
quantum mechanical counterpart of this result is often referred to a Kubo’s
formula.

The autocorrelation function (8.4.27) for the current involves the occupa-
tion numbers in the combination, cf. (8.3.2), (8.4.23),
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N(P ) [S(P − k) −N(P − k)] =
∑
ε,ε′

(2πm)2

εε′
δ(P 0 − εε)nε(εP )

×δ(P 0 − ω − ε′ε′) [1 − nε′(ε′(P − k))], (8.4.28)

with ε′ = [m2 + (P − k)2]1/2. Fermi-Dirac distributions for electrons and
positrons and a Planck distribution are

nε(εP ) =
1

exp[(ε− εµe)/T ] + 1
, NPlanck(k) =

1
exp[ω(k)/T ] − 1

,

(8.4.29)
where µe is the chemical potential. For a thermal distribution, the combination
of occupation numbers in (8.4.28) can be written in the form

nε(εP )[1 − nε(εP ′)] = − nε(εP )nε(εP ′)
NPlanck(P − P ′)

, (8.4.30)

with P ′ = P − k, and with ω(k) = ε − ε′. The combination of occupation
numbers (8.4.30) appears in the linear response tensor in the form (8.3.10),
and by inspection, one finds the autocorrelation function (8.4.27) satisfies

〈δJ δJ∗〉µν(k) = −2i [exp(ω/T )− 1]−1ΠAµν(k). (8.4.31)

The result (8.4.31) may also be regarded as a form of Kubo’s formula. The
non-quantum limit corresponds to [exp(ω/T ) − 1]−1 → T/ω, in which case
(8.4.31) reduces to a covariant form of the fluctuation-dissipation theorem.

8.4.10 Density matrix approach

A further alternative approach for the derivation of the response tensors in
QPD is based on using the Heisenberg picture to follow the effects of the
interaction between fields, rather than the interaction picture, used in the
approach based on the S-matrix, and the Schrödinger picture, used in the ap-
proach based on the Wigner function. Harris [12] used the Heisenberg picture
in a nonrelativistic quantum calculation, and his method was later generalized
to a relativistic quantum treatment [13, 14, 15]. In this approach, the density
matrix is expanded in powers of the amplitude, Aµ(k), of the electromagnetic
field, and the first order term in this expansion is used to derive the linear
response tensor.

In the Heisenberg picture, the evolution is in the operators and is deter-
mined by the Hamiltonian. It is convenient to write the zeroth order Hamil-
tonian in the form

Ĥ0(t) =
∑
ε,q

εεq ˆ̄aε
q(t) â

ε
q(t), (8.4.32)

where the sum over quantum numbers, q, reduces to a sum over the spin and
integral over the momentum components for free particles. The first order
Hamiltonian (for fermions with charge −e) is



8.4 Wigner matrix and density matrix approaches 357

Ĥ1(t) = e
∑
ε′,q′

∑
ε,q

ˆ̄aε′

q′(t) âε
q(t)

∫
d3xΨ

ε′

q′(x)γµΨ ε
q (x)Aµ(x)e[i(ε

′εq′−εεq)t].

(8.4.33)
The basic idea in the method is to include the time dependence in the creation
and annihilation operators, and hence in the density matrix

wε′ε
q′q(t) = Tr [ŵP ˆ̄aε′

q′(t) âε
q(t)], (8.4.34)

where ŵP is introduced in (8.2.1). The evolution of operators is determined
by the commutation relation with the Hamiltonian. For an operator P̂ (t) one
has

dP̂ (t)
dt

= i[Ĥ(t), P̂ (t)]. (8.4.35)

8.4.11 Expansion of the density matrix

The evolution of the product of creation and annihilation operators that
appears in the density matrix (8.4.34) follows from (8.4.35) and the anti-
commutation relations (6.4.18). One finds

d

dt
[ˆ̄aε′

q′(t) âε
q(t)] = i(ε′εq′ − εεq)ˆ̄a

ε′

q′(t) âε
q(t)

+ie
∑

ε′′,q′′

∫
d3xAν(x)[ˆ̄aε′′

q′′(t) âε
q(t)Ψ

ε′′

q′′ (x)γνΨ ε′
q′ (x)e[i(εεq−ε′′εq′′ )t]

−ˆ̄aε′

q′(t) âε′′
q′′ (t)Ψ

ε

q(x)γνΨ ε′′
q′′ (x)e[i(ε

′′εq′′−ε′εq′ )t]. (8.4.36)

On inserting (8.4.36) into (8.4.34), the density matrix is expanded in powers
of A. The zeroth order term is

[wε′ε
q′q(t)]

(0) = wε
q δ

ε′εδq′q, wε
q = 1

2 (1 − ε) + εnε
q, (8.4.37)

and the first order term is

[wε′ε
q′q(t)]

(1) = −e
∫
dΩ

2π
e−iΩt

wε
q − wε′

q′

Ω − εεq + ε′εq′

×
∫
d3xAν(x)Ψ

ε

q(x)γνΨ ε′
q′ (x)e[i(ε

′εq′−εεq)t]. (8.4.38)

8.4.12 Linear response tensor

The linear induced current is identified as

[Jµ(x)](1) = −e
∑
ε′,q′

∑
ε,q

Ψ
ε′

q′(x)γνΨ ε
q(x)e[−i(ε′εq′−εεq)t][wε′ε

q′q(t)]
(1). (8.4.39)
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After Fourier transforming, the relation between the 4-current and the 4-
potential allows one to identify the response tensor. One finds

Πµν(k) = 2e2
∑
ε,ε′

∫
d3p

(2π)3

1
2 (ε′ − ε) + εnε(p) − ε′nε′(p′)

ε′εε′ε(ω − εε+ ε′ε′)

×Tr [γµ(ε/p+m)γν(ε′/p′ +m)]. (8.4.40)

The trace over the product of gamma-matrices gives Fµν(εp, ε′p′), and (8.4.40)
reproduces (8.3.10).

It should be emphasized that the S-matrix, Wigner-matrix and density
matrix approach are formally equivalent in including the effects of a medium.
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8.5 Nonlinear response tensors

A prescription for writing down expressions for the nonlinear quadratic and cu-
bic response tensors for a relativistic quantum plasma is given in §8.2. Specifi-
cally, in the amplitudes for a diagram with a closed electron loop, one replaces
the electron propagators around the loop by their statistical averages, and re-
tains only the terms obtained from the resonant part of one propagator and
the nonresonant parts of the other propagators. In this section this prescrip-
tion is used to write down expressions for the quadratic and cubic response
tensors for an electron gas.

8.5.1 Closed particle loops

The simplest example of a closed particle loop is the bubble diagram, cf.
Fig. 8.1, whose statistical average gives the linear response tensor (§8.3). To
every diagram containing a closed electron loop there is an analogous diagram
that differs only in the direction of the arrow around the loop. These diagrams
are treated together as a pair of similar diagrams. In QPD, the statistical
average of a diagram containing a closed electron loop with m vertices gives
an m-photon vertex. Thus a diagram containing an m-photon vertex replaces
the pair of diagrams (differing only in the sense of the arrow) that contain a
closed particle loop with m sides. The statistical averages of the triangle and
box diagrams, cf. Fig. 8.8, give the quadratic and cubic nonlinear response
tensors, corresponding to 3-photon and 4-photon vertices, respectively.

The statistical average effectively reduces the order of a diagram by two:
two powers of e in the amplitude are combined with the number density of the
electrons into the plasma frequency, and are no longer counted in the order
of the diagram. Hence, the 3-photon vertex is regarded as of first order in
QPD, and the 4-photon vertex is regarded as of second order in QPD. More
generally, a m-photon vertex is regarded as of order (m− 2) in the Feynman
amplitude in QPD.

8.5.2 nth order nonlinear response tensor

The prescription for the statistical average of an electron loop with n + 1
vertices results in the expression for nth order nonlinear response tensor for
an electron gas:

Π(n)ν0ν1...νn(k0, k1, . . . , kn) = −i (−e)
n+1

n!

∫
d4P

(2π)4

×
∑
perm

Tr
[
G(P )γν0G(P − k0)γν1G(P − k0 − k1)

. . .G(P − k0 − k1 − · · · − kn−1)γνn
]
, (8.5.1)
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Fig. 8.8. The triangle diagram and the box diagrams. Their amplitudes are replaced
by a 3-photon vertex and a 4-photon vertex, respectively, after statistically averaging
over a medium.

where the sum “perm” is over the (n+1)! terms obtained from the one written
by symmetrizing over permutations of the labels 0, 1, . . . , n, and moving the
statistical average to each of the other propagators in turn for each such
permutation.

8.5.3 Quadratic response tensor for an electron gas

The quadratic nonlinear response tensor follows from (8.5.1) for n = 2:

Πµνρ(k0, k1, k2) = Πµνρ
1 (k0, k1, k2) +Πµρν

1 (k0, k2, k1),

Πµνρ
1 (k0, k1, k2) =

ie3

2

∫
d4P

(2π)4
Tr
[
Ḡ(P )γµG(P − k0)γνG(P + k2)γρ

+2 other terms
]
, (8.5.2)

where the “2 other terms” refer to those obtained by moving the overline on
the first propagator to the second and then to the third propagators. The two
different contributions in (8.5.2) correspond to the two distinct orderings of
the photon lines around the electron loop.

On inserting the explicit form (8.2.16) for the statistically averaged prop-
agator, (8.5.2) gives

Πµνρ
1 (k0, k1, k2) =

e3

4

∑
ε,ε′,ε′′

℘
∫

d3p

(2π)3
T µνρ

1 (p̃; k0, k1, k2)
8εε′ε′′εε′ε′′

{

ε[1 − 2nε(p)]
(εε− ω0 − ε′ε′)(εε+ ω2 − ε′′ε′′)

+
ε′[1 − 2nε′(p + k0)]

(ε′ε′ + ω0 − εε)(ε′ε′ − ω1 − ε′′ε′′)

+
ε′′[1 − 2nε′′(p + k2)]

(ε′′ε′′ − ω2 − εε)(ε′′ε′′ + ω1 − ε′ε′)

}
, (8.5.3)

T µνρ
1 (P ; k0, k1, k2) = Tr

[
(/P +m)γµ(/P − /k0 +m)γν(/P + /k2 +m)γρ

]
,

(8.5.4)

with p̃µ = [P 0,p], ε′ = [m2 + (p − k0)2]1/2, ε′′ = [m2 + (p + k2)2]1/2.
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k0

k2

k1 k0

k2

k1

Fig. 8.9. The two contributions (8.5.2) to the quadratic response tensor correspond
to the two different ordering shown of the three photon lines around the electron
loop, as illustrated.

For the quadratic response, the positrons contribute with the opposite sign
to the electrons. This is consistent with the fact that interchanging electrons
and positrons corresponds to reversing the direction of the arrows around the
triangle diagram, and this is equivalent to interchanging the two diagrams in
Fig. 8.9. Hence, the positron contribution to Πµνρ

1 (k0, k1, k2) is equal in mag-
nitude and opposite in sign to the electron contribution to Πµρν

1 (k0, k2, k1).
The fact that the electron and positron contributions have opposite signs im-
plies that the quadratic response vanishes not only for the vacuum but also
for a pure pair plasma with identical electron and positron distributions.

8.5.4 Cubic response tensor for an electron gas

The cubic nonlinear response terms follows from (8.5.1) for n = 3. It reduces
to

Πµνρσ(k0, k1, k2, k3) = Πµνρσ
1 (k0, k1, k2, k3) +Πµνσρ

1 (k0, k1, k3, k2)
+Πµρνσ

1 (k0, k2, k1, k3) +Πµρσν
1 (k0, k2, k3, k1)

+Πµσνρ
1 (k0, k3, k1, k2) +Πµσρν

1 (k0, k3, k2, k1). (8.5.5)

The six contributions to (8.5.5) correspond to the six orders in which one can
draw the four photon lines around the electron loop, cf. Fig. 8.10.

The explicit form for each term in (8.5.5) follows from (8.5.1):

Πµνρσ
1 (k0, k1, k2, k3) = − ie

4

6

∫
d4P

(2π)4
Tr
[
Ḡ(P )γµG(P − k0)γν

×G(P − k0 − k1)γρG(P + k3)γσ + 3 other terms
]
, (8.5.6)

where the “3 other terms” refer to those obtained by moving the overline on
the first propagator to the second, third and fourth propagators.

It is convenient to write the trace in the numerator in (8.5.6) in the form

T µνρσ
1 (P ; k0, k1, k2, k3) = Tr

[
(/P +m)γµ(/P − /k0 +m)γµ

×(/P − /k0 − /k1 +m)γρ(/P + /k3 +m)γσ
]
, (8.5.7)
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k3

k2

k0

k1

k2

k3

k0

k1

Fig. 8.10. Two of the six contributions (8.5.5) to the cubic response tensor are
illustrated; the remaining contributions follow by permuting the order of the photon
lines.

where k0 + k1 + k2 + k3 = 0 is implicit. Then (8.5.6) reduces to

Πµνρσ
1 (k0, k1, k2, k3) = − e

4

12

∑
ε,ε′,ε′′,ε′′′

×℘
∫

d3p

(2π)3
T µνρσ

1 (p̃; k0, k1, k2, k3)
16εε′ε′′ε′′′εε′ε′′ε′′′

×
{

ε[1 − 2nε(p)]
(εε− ω0 − ε′ε′)(εε− ω0 − ω1 − ε′′ε′′)(εε+ ω3 − ε′′′ε′′′)

+
ε′[1 − 2nε′(p − k0)]

(ε′ε′ + ω0 − εε)(ε′ε′ − ω1 − ε′′ε′′)(ε′ε′ − ω1 − ω2 − ε′′′ε′′′)

+
ε′′[1 − 2nε′′(p − k0 − k1)]

(ε′′ε′′ + ω0 + ω1 − εε)(ε′′ε′′ + ω1 − ε′ε′)(ε′′ε′′ − ω2 − ε′′′ε′′′)

+
ε′′′[1 − 2nε′′′(p + k3)]

(ε′′′ε′′′ − ω3 − εε)(ε′′′ε′′′ − ω0 − ω3 − ε′ε′)(ε′′′ε′′′ + ω2 − ε′′ε′′)

}
,

(8.5.8)

with p̃µ = [P 0,p]. The electron and positron contributions add when all six
terms in (8.5.5) are included. The result is equivalent to omitting the explicit
contributions from positrons in (8.5.8), and replacing the electron contribution
in accord with

n+(p) → n̄(p) = n+(p) + n−(p). (8.5.9)

The unit terms in (8.5.8) give the cubic vacuum polarization tensor, discussed
in §8.1.5.
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8.6 Inclusion of a photon gas

In QPD, the fact the the 3-photon vertex is of the same order as the electron-
photon vertex implies that the bubble diagram with external and internal
photon lines is of the same order as the conventional bubble diagram. This
diagram leads to a contribution to the linear response tensor from a distri-
bution of photons. One consequence is that a beam of high-energy photons
can act like a beam of charged particles in causing instability of low-frequency
waves. A separate effect is a nonlinear correction to the linear response tensor
due to the presence of a distribution of photons.

8.6.1 Linear response due to a photon gas

In QPD the 3-photon interaction is of the same order as the electron-photon
vertex, and an analogy with the calculation of response tensors for an electron
gas suggests that there should be a hierarchy of response tensor for a photon
gas. In practice, the contribution of a distribution of waves to the response
tensors is extremely small compared with the contribution of the electrons.
Nevertheless, the contribution can be physically relevant under appropriate
conditions. The diagram Fig. 8.11 is the counterpart of the bubble diagram,
with the electron-photon vertices replaced by 3-photon vertices, and the two
electron propagators replaced by photon propagators. The statistical average
of this diagram leads to a contribution to the linear response tensor for a
photon gas, which is found by replacing the electron-photon vertices by 3-
photon vertices, using Rule 9c in §7.1. There are three ways of separating
each vertex into an external line and two internal lines, and the factors of 3
cancel the factors 1/3 in Rule 9c for the 3-photon vertex. This gives

Πµν
ph (k) = −i

∫
d4K

(2π)4
Πµαβ(−k,K, k −K)Dαρ(K)

×Πνρσ(k,−K,−k +K)Dβσ(k −K). (8.6.1)

As with the statistical average of the bubble diagram, one retains only the
two terms obtained from the resonant parts of one of the photon propagators
and the nonresonant part from the other photon propagator. The resonant
part is the antihermitian part, and the relevant contribution is for a specific
distribution of photons. The nonresonant part is unaffected by the statistical
averaging.

For photons is the modeM , the resonant part of the statistically averaged
photon propagator is given by (8.2.17). This contains a factor 1 + 2NM (k),
and the unit term in 1 + 2NM (k) is neglected when only the contribution of
the photons is of interest. Then (8.2.17) gives

D
Aµν

M (k) = iµ0
RM

ωM
eµMe

∗ν
M 2πδ(ω − ωM )NM (k), (8.6.2)
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k
k - K 

K

k

Fig. 8.11. Feynman diagram for the linear response tensor for a photon gas. The
faint vertical line indicates a cut discusses in the text.

where only the positive-frequency solutions is included explicitly. In applying
(8.6.2) to (8.6.1) one needs to take account of the signs of the frequencies K0

and k0 −K0; if the sign is positive one uses (8.6.2) and if the sign is negative
one uses the complex conjugate of (8.6.2). For K0 > 0 and k0 −K0 < 0, the
contributions from the two internal lines in Fig. 8.11 have opposite signs, so
that the sum of the two is proportional to NM (K) −NM (K − k).

The nonresonant part of the photon propagator is given by general ex-
pressions written down in §2.1, for example, the form (2.1.11). The resulting
general expression for the response tensor is of most interest in the case where
the nonresonant part of the photon propagator is near a resonance, corre-
sponding to waves in the same mode, M , or in a different mode, M ′. For the
resonance corresponding to the modeM , the hermitian part of the propagator
(with no statistical averaging) may be approximated by

Dµν
M (k) = −µ0

RM

ωM

eµMe
∗ν
M

ω − ωM + i0
. (8.6.3)

Applying the Plemelj formula to the resonant denominators, the principal
value parts give the relevant contribution to the hermitian part of the propa-
gator. There is a contribution of the form (8.6.3) for each of the modes in the
medium. The response tensor due to waves in the modeM follows from (8.6.1)
by sequentially replacing one propagator by (8.6.2) and the other propagator
by the sum over all the modes of the contributions (8.6.3) from each mode.

The specific form for the contribution of a distribution of photons in the
mode M to the linear response tensor follows from (8.6.1)–(8.6.3), which give

Πµν
ph (k) = µ2

0

∫
d3K

(2π)3
RM (K)
ωM (K)

RM (K − k)
ωM (K − k)

× Zµ
MM (k,K)Z∗ν

MM (k,K)
ω − ωM (K) + ωM (K − k)

[NM (K) −NM (K − k)],

Zµ
MM (k,K) = e∗Mα(K)eMβ(K − k)Πµαβ(−k,K, k −K). (8.6.4)
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8.6.2 Relation to three-wave coupling

The antihermitian part of the linear response tensor, ΠAµν(k), is associated
with damping: the absorption coefficient for a specific mode is given by (2.4.14)
in terms of ΠAµν(k). The antihermitian part of (8.6.4) implies that the pres-
ence of waves in the mode M can lead to a form of damping for waves in any
mode. Consider a mode Q: the absorption coefficient for Q due to waves in
the mode M is

γQ(k) = 2i
RQ(k)
ε0ωQ(k)

ΠA
Q(kQ), ΠA

Q(k) = e∗Qµ(k)eQν(k)ΠAµν(k). (8.6.5)

The absorption coefficient (8.6.5) may be interpreted in terms of dissipa-
tion due to 3-wave interactions, in which a wave in the mode M at k decays
into a wave in the mode M at k −K and a wave in the mode Q at K. The
thin vertical line in Fig. 8.11 represents the cut that corresponds to taking the
resonant part, and this cut separates the diagram into two 3-photon vertices.
This relation is confirmed by noting the form (5.7.4) for the 3-wave coales-
cence probability, wMPQ(−k, k′, k′′), for M ↔ P +Q, and its counterpart for
the processM ↔M +Q, which involves the replacement P →M and a mul-
tiplicative factor of 1/2. The kinetic equation (5.7.9) for waves in the mode
Q due to M ↔ P +Q, contains terms on the right hand side proportional to
NQ, and minus the coefficient of these terms may be written as an absorption
coefficient, γQ(k). On setting P → M in (5.7.9), one finds that this absorp-
tion coefficient reproduces (8.6.5) with (8.6.4), confirming the interpretation
of (8.6.5).

The foregoing argument generalizes to the case where the three wave modes
are different, corresponding to M ↔ P + Q. The internal lines in Fig. 8.11
correspond to the different modes, one corresponding to M and the other to
P .

8.6.3 Instability due to a photon beam

An application of the linear response of a photon gas is to a beam of photons in
a plasma. Just as a beam of fast particles propagating through a background
plasma can lead to an instability in which Langmuir waves grow, a beam of
high-frequency photons propagating through a background plasma can lead
to an instability in which Langmuir waves grow. If the beam of photons has
a frequency much greater than the plasma frequency, the 3-wave matching
conditions lead to a resonance-like condition

ωQ(k) − k · vgM (K) = 0, (8.6.6)

where vgM (K) = ∂ωM (K)/∂K is the group velocity for the waves in the
mode M . The same approximation applied to the occupation numbers in
(8.6.4) corresponds to NM (K) − NM (K − k) ≈ k · ∂NM (K)/∂K In prin-
ciple, if the growth rate is large enough (greater than the bandwidth of the
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(a) (b)

kkkk

K

Fig. 8.12. (a) Feynman diagram for the nonlinear correction to the linear response
due to a photon gas; the closed dashed line corresponds to the resonant part of the
photon propagator for some specific wave mode. (b) The nonlinear response arises
from averaging the box diagram with an internal photon line; the faint vertical line
indicates a cut discusses in the text.

growing waves), this kinetic instability is replaced by a reactive version, which
is derived from the hermitian part of (8.6.4) for the beam of high-frequency
photons.

Such a photon-driven instability for Langmuir waves has been proposed
for eclipsing of radio pulsars as they pass behind the wind of a star along the
line of sight [16]. Radio pulsars have extremely high brightness temperatures,
implying very large values for the photon occupation number. As the pulsar
passes behind the wing of an intervening star, the pulsar radiation corresponds
to an extremely narrow beam with frequency much greater than the plasma
frequency in the wind. The growth of Langmuir waves leads to scattering of
photons, analogous to the quasilinear relaxation of a beam of electrons being
scattered by the Langmuir waves they generate through a beam instability. A
low-density wind can occult the pulsar due to this scattering, which effectively
makes the wind opalescent to the pulsar radiation.

8.6.4 Nonlinear effects of a photon gas

The linear response tensor (8.6.4) for a photon gas may be derived in a differ-
ent way that shows that there is an additional contribution of the same order.
A quantum version of the alternative derivation starts from the S-matrix ele-
ment for a 4-photon vertex with a contraction over two of the wavefunctions.
The cubic response becomes a nonlinear correction to the linear response due
to the presence of this wave field. The cubic response consists of an intrinsi-
cally cubic response, and combinations of two quadratic responses. The only
combination of quadratic responses that leads to a nontrivial result after this
contraction reproduces the linear response tensor (8.6.1). The same procedure
applied to the intrinsically cubic response leads to a new contribution of the
same order as that due to the linear response of a photon gas.

The Feynman diagram is illustrated in Fig. 8.12: two opposite photon lines
in the 4-photon vertex are joined to form a closed photon loop. The resulting
contribution to the linear response tensor is
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Πµν
NL(k) = −i

∫
d4K

(2π)4
Πµναβ(−k, k,K,−K)Dαβ(K). (8.6.7)

The statistically averaged photon propagator in (8.6.7), which corresponds
to the closed photon line in Fig. 8.12a, is given by (8.6.2) when only the
contribution from waves in the mode M is retained.

It might remarked that the foregoing quantum mechanical results are re-
produced by a classical calculation. Classically, one starts starts with the
effective cubic response is of the form

Jµ(k) =
∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

(2π)4δ4(k − k1 − k2 − k3)

×Πµνρσ
eff (−k, k1, k2, k3)Aν(k1)Aρ(k2)Aσ(k3), (8.6.8)

with k = k1 + k2 + k3. Let the fields at k2 and k3 correspond to a given
distribution of photons in the mode M . Performing a statistical average gives

〈Aρ(k2)Aσ(k3)〉 = (2π)4δ4(k2 + k3)µ0
RM (k2)NM (k2)

ωM (k2)
×eµM (k2)e∗ν

M (k2) 2πδ
(
ω − ωM (k2), ,(8.6.9)

where (5.5.6) is used, and where only the positive frequency part is included
explicitly. The phase average (8.6.9) is equivalent to a contraction in the quan-
tum theory, and corresponds to joining two external photon lines to form a
closed photon line in a Feynman diagram. The result for the intrinsically cubic
response reproduces (8.6.7). For the combination of two quadratic that lead to
an equivalent cubic response, only the combination that leads to two photon
lines joining the two 3-photon vertices contributes, and this term reproduces
(8.6.1).

8.6.5 Dissipation modified by a photon gas

The antihermitian part of the response tensor Πµν
NL(k), given by (8.6.7) has

quite a different interpretation to that for the response tensor Πµν
ph (k), given

by (8.6.1). The dissipative part corresponds to a resonance, and may be rep-
resented by a cut that separates the diagram into two parts that describe
the processes that cause the dissipation. The cut in Fig. 8.11 separates the
diagram into two equivalent parts, each corresponding to a 3-wave vertex, so
that the dissipation is attributed to 3-wave interactions. There is no cut that
separates the diagram Fig. 8.12a into two equivalent parts. The cut shown
explicitly in Fig. 8.12b is to the right of the internal photon line, and there is
an alternative cut to the left of the internal photon line. Each cut separates
the diagram into two parts shown in Fig. 8.13: (a) a vertex correction and (b)
an electron-photon vertex. Before the statistical averaging, the box diagram
is of fourth order, and this separation it into a first order diagram and a third
order diagram, respectively. The product of a first order and a third order



368 8 Responses of a quantum plasma

p

k

p - k p

k

p - k

(a) (b)

Fig. 8.13. The cut indicated in Fig. 8.12b separates it into (a) a vertex correction
of the form Fig. 8.1 and (b) a simple electron-photon vertex,

amplitude (plus its complex conjugate from the diagrams from the cut to the
left of the internal photon line in Fig. 8.12b) is of the same order as the modu-
lus squared of a second order amplitude. This suggests that the interpretation
of the nonlinear dissipation implied by the antihermitian part of Πµν

NL(k) is
qualitatively different from other examples of dissipation, in that it involves
the interference between a first order and a third order process.

The third order diagram in Fig. 8.13a corresponds to a radiative correc-
tion to Cerenkov emission. The statistical average over the internal photon
line gives a contribution from real photons in the medium, here assumed to be
in the mode M . A classical interpretation is that the presence of the waves in
the mode M affects the motion of the radiating particle: its rectilinear motion
is perturbed by the presence of the waves. The statistically averaged effect of
these perturbations modifies Cerenkov emission. In a semiclassical interpreta-
tion, the perturbations in the motion of the particle are attributed to emission
and reabsorption of wave quanta in the modeM . With this interpretation, the
dissipation associated with the antihermitian part of Πµν

NL(k) is of relatively
little interest: it is a small nonlinear correction to Landau damping.

From a formal viewpoint, it is of interest to note that this absorption
process is an example of a second order process in QPD that is the outer
product of first and third order amplitudes, rather than the square of a second
order amplitude. Analogous mixed order processes must occur in QED, but are
not normally considered. The fact that first order processes are kinematically
forbidden in vacuo, implies that the lowest order such process in QED is of
third order, involving the outer product of second and fourth order amplitudes.
For example, such a process is of the same order as double Compton scattering,
but is kinematically equivalent to Compton scattering and may be regarded
as a small correction to Compton scattering.

8.6.6 Turbulent bremsstrahlung

The vertex correction illustrated in Fig. 8.13a corresponds to a process in
which the electron emits a wave in the mode M before the change in 4-
momentum by k at the vertex, and absorbs an identical wave in the mode M
after the change by k at the vertex. (The corresponding process in which the
electron absorbs and emits the wave in the mode M in the opposite order is
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included implicitly.) This leads to a third-order diagram that has the same
three external momenta as the simple vertex diagram in in Fig. 8.13b. The
amplitude for this third order diagram should be added to that of the first
order diagram when considering the first order processes. The additional term
leads to the existence of hybrid processes whose existence is usually ignored.
As argued above, the relevant hybrid process is a small correction to Cerenkov
emission or Landau damping of one wave mode due to the wiggling motion of
the emitting particle resulting from the presence of waves in another mode.

A controversy arose concerning an intrinsically new emission process called
‘turbulent bremsstrahlung’ (TB), proposed in Ref. [17]. A variant of TB was
proposed in Ref. [18, 19], and called the process the ‘plasma maser’ effect.
The characteristic feature of TB is that the presence of low frequency (e.g.,
ion acoustic) affects causes growth of high-frequency (Langmuir or trans-
verse) waves. A physical rationale for turbulent bremsstrahlung is that the
ion acoustic waves can be interpreted as an enhanced spectrum of the fluctua-
tions associated with random motions of the particles in the plasma, and that
bremsstrahlung may be regarded as emission associated with the perturbed
motion of electrons due to these fluctuations. The subsequent controversy in-
volved the present author [20, 21], and resulted in it becoming accepted that
TB does not exist in a ‘closed’ plasma [22]. The criticism of the originally
proposed treatment of TB is that it purports to derive a growth rate for the
wave mode corresponding to the closed photon line in Fig. 8.12; whereas these
waves are necessarily emitted and absorbed in identical pairs so that their dis-
tribution is unaffected. The process described by Fig. 8.12 has no effect on
the waves described by the closed photon line.
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9

Isotropic quantum plasmas

The case of an isotropic plasma, and more specifically a thermal plasma, is
of particular interest for dispersion in a plasma. Dispersion in a relativistic
quantum plasma differs from dispersion in a nonquantum plasma due to four
effects: the quantum recoil, dispersion associated with pair creation, degen-
eracy, and the effects of the spin of the particles. In this chapter the general
theory for dispersion in a relativistic quantum electron gas, presented in §8.3,
is applied to an isotropic electron gas, and to the specific case of a Fermi-
Dirac (thermal) distribution. Both the degenerate and nondegenerate limits
for a Fermi-Dirac distribution are treated in detail. The results are used to
discuss the properties of longitudinal and transverse waves in such plasmas.
The electrons are assumed unpolarized; spin-dependent effects are discussed
separately in §10.2.

General expressions for the response tensor for an isotropic electron gas
are derived in §9.1. Dissipation processes in isotropic quantum plasmas are
discussed in §9.2. The linear response for a completely degenerate electron gas
is evaluated in §9.3, and for a nondegenerate electron gas in §9.4. Dispersion in
isotropic quantum plasmas is discussed in §9.5, and the properties of waves are
discussed in §9.6, with emphasis on waves in a completely degenerate electron
gas.
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DOI: 10.1007/978-0-387-73902-1 c© Springer-Verlag New York 2008



372 9 Isotropic quantum plasmas

9.1 Isotropic distributions

The linear response of an isotropic medium be described in terms of the lon-
gitudinal and transverse response functions, with a rotatory response only
if the particles have a specific handedness. In this section, general expres-
sions are written down for the longitudinal and transverse response functions
of an isotropic distribution of unpolarized electrons. Three relativistic quan-
tum plasma dispersion functions (RQPDFs) are introduced to describe the
response.

9.1.1 Separation into longitudinal and transverse parts

The most general form of the response tensor for an isotropic medium is given
by (1.6.1). The rotatory part is zero for an unpolarized electron gas, and the
response tensor is of the form

Πµν(k) = ΠL(k)Lµν(k, ũ) +ΠT (k)T µν(k, ũ), (9.1.1)

where the longitudinal and transverse tensors, Lµν(k, ũ) and T µν(k, ũ), re-
spectively, are given by, cf. (1.6.12),

Lµν(k, u) =
k2

k2 − (ku)2

[
aµν(k, u) −

(
gµν − k

µkν

k2

)]
,

T µν(k, u) =
1

k2 − (ku)2

[
−(ku)2 aµν(k, u) + k2

(
gµν − k

µkν

k2

)]
,

aµν(k, u) = gµν − k
µuν + kνuµ

ku
+
k2 uµuν

(ku)2
. (9.1.2)

For a given Πµν(k) one may construct the longitudinal and transverse parts
using

ΠL(k) =
(kũ)4

k4
Lµν(k, ũ)Πµν(k), ΠT (k) = 1

2Tµν(k, ũ)Πµν(k). (9.1.3)

The projections of the various different forms for Πµν(k) in §8.3 lead to su-
perficially different results. Two different forms are considered here.

Starting from the form (8.3.5) for Πµν(k), the projections in (9.1.3) oper-
ate on the tensors Fµν(P, P ∓k), given by (8.3.3). It is convenient to separate
this tensor into longitudinal and transverse parts (the remaining parts are
nonzero but integrate to zero for an isotropic plasma). Explicit evaluation
gives

FL(P,−εk) =
(kũ)2

k2

(
2(k2P ũ− Pk kũ)2
k2[k2 − (kũ)2]

+ εPk
)
,

FT (P, P − εk) = m2 − (Pk)2

k2
− (k2P ũ− Pk kũ)2

k2[k2 − (kũ)2]
+ εPk, (9.1.4)
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where P 2 = m2 is assumed. Then (8.3.5) gives

ΠL,T (k) =
2e2

m

∫
d4P

(2π)4
N(P )

∑
ε

FL,T (P, P − εk)
−2εPk + k2

. (9.1.5)

In further evaluation of the integral in (9.1.5) it is helpful to rewrite the
integrand such that Pk does not appear in the numerator. This gives

∑
ε

FL(P, P − εk)
−2εPk + k2

=
∑

ε

(
1
2 (kũ)2 +

(kũ)2(2P ũ− εkũ)2
k2 − (kũ)2

)
1

−2εPk + k2

+
(kũ)2

k2 − (kũ)2
,

∑
ε

FT (P, P − εk)
−2εPk + k2

=
∑

ε

(
m2 +

k2

4
− k

2(2P ũ− εkũ)2
4[k2 − (kũ)2]

)
1

−2εPk + k2

+
2(kũ)2 − k2

2[k2 − (kũ)2]
. (9.1.6)

The form (9.1.5) with (9.1.6) is the starting point for further evaluation below.
An alternative form is obtained by starting from (8.3.14), which includes

all resonances in the single denominator (Pk)2−k4/4. For this form, one finds

ΠL(k) = −e
2

m

(kũ)2

k2 − (kũ)2

∫
d4P

(2π)4
N(P )

(Pk)2 − 2Pk P ũ kũ+ k2(P ũ)2

(Pk)2 − k4/4
,

ΠT (k) = − e
2

2m

∫
d4P

(2π)4
N(P )

{
(Pk)2 +m2k2

− (Pk kũ− k2 P ũ)2

k2 − (kũ)2

}
1

(Pk)2 − k4/4
. (9.1.7)

The form (9.1.7) is useful in identifying the nonquantum limit, which corre-
sponds to neglecting the recoil term −k4/4 in the resonant denominator. On
neglecting this term (9.1.7) reproduces (4.1.17) and (4.1.18).

The assumption that the distribution is isotropic is not used explicitly in
deriving the forms (9.1.5) and (9.1.7): these are the longitudinal and transverse
projections of an arbitrary response tensor. For an isotropic distribution, the
parts that are neither longitudinal nor transverse integrate to zero.

9.1.2 Isotropic distribution in its rest frame

In evaluating the response functions in the forms (9.1.5), the fact that the
electrons and positrons contribute in the same way implies that one need
evaluate the response functions only for electrons. The positrons are included
simply by replacing the occupation number for electrons by the sum, n̄(ε),
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of the occupation numbers of the electrons and positrons. The 4-momentum
P = εp is replaced by the 4-momentum, p, of an electron.

On choosing the rest frame, the assumption that the distribution is
isotropic allows one to replace p by −p. The only direction in the problem is
that of k, and p → −p corresponds to p ·k → −p ·k. The freedom to reverse
the sign of p · k allows one to replace the denominators in (9.1.6) such that
1/(−2εpk+ k2) is replaced by

1
−2εεω + 2p · k + ω2 − |k|2 → −

∑
ε′

1
2ε′

ε′

ω − εε+ ε′ε′
, (9.1.8)

with ε′ = [m2 + (p − k)2]1/2.
The response functions in the form (9.1.5), together with (9.1.6) and

(9.1.8), lead to the expressions

ΠL(k) =
e2np0ω

2

m|k|2 +
e2ω2

2|k|2
∫

d3p

(2π)3
n̄(ε)
εε′

×
∑
ε,ε′
ε′

4ε2 − 4εεω + ω2 − |k|2
ω − εε+ ε′ε′

, (9.1.9)

ΠT (k) = −e
2np0(ω2 + |k|2)

2m|k|2 − e
2(ω2 − |k|2)

|k|2
∫

d3p

(2π)3
n̄(ε)
εε′

×
∑
ε,ε′
ε′

4ε2 − 4εεω + ω2 + |k|2 − 4ε2k
ω − εε+ ε′ε′

, (9.1.10)

where np0 is the proper number density, and where it is convenient to intro-
duce

εk =
|k|
2

(
ω2 − |k|2 − 4m2

ω2 − |k|2

)1/2

. (9.1.11)

9.1.3 Tsytovich’s form for ΠL,T (k)

Before carrying out the angular integrals in (9.1.9) and (9.1.10), it is appropri-
ate to note an alternative form for the response functions, originally derived by
Tsytovich [1] using a 3-tensor formulation. Starting from the 3-tensor com-
ponent of (8.3.10), choosing the rest frame, and calculating ΠL,T (k) using
(1.6.3) leads to expressions for the response functions that are equivalent to
(9.1.5). The derivation of Tsytovich’s form for the response functions is anal-
ogous to the derivation of (9.1.9), (9.1.10), except that the step leading to
(9.1.6) is not made, so that the numerators are quadratic functions of p · k,
due to FL,T (P, P − εk) being quadratic functions of Pk → εω − p · k. The
longitudinal and transverse parts become

ΠL,T (k) = 2e2
∫

d3p

(2π)3
n̄(ε)

[
ε− ε′

ω2 − (ε− ε′)2 a
L,T
+ (p,k)
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+
ε+ ε′

ω2 − (ε+ ε′)2
aL,T
− (p,k)

]
, (9.1.12)

aL
±(p,k) = 1 ∓ 1

εε′

(
ε2 + p · k − 2

(p · k)2

|k|2

)
,

aT
±(p,k) = 1 ∓ 1

εε′

(
m2 − p · k +

(p · k)2

|k|2

)
. (9.1.13)

The definition of ε′ implies

p · k = 1
2 (ε2 − ε′2 + |k|2), (9.1.14)

which may be used to show that the form (9.1.12) with (9.1.13) is equivalent
to (9.1.9), (9.1.10).

9.1.4 Integral over angles

The integral over d3p in (9.1.9), (9.1.10) involves an integral over |p| and an
integral over solid angle, which may be written in terms of polar angles about
the direction of k. The integral over azimuthal angle is trivial, giving 2π. The
remaining integrals over |p| and cos θ = p · k/|p| |k| are rewritten as integrals
over ε and ε′ = (m2 + |p − k|2)1/2. Writing the limits of integration for ε′ as
ε′min, ε′max, one has

ε′max,min = (ε2 ± 2|p||k| + |k|2)1/2. (9.1.15)

The integral over momentum becomes

∫
d3p → 2π

∫ ∞

0

d|p| |p|2
∫ 1

−1

d cos θ =
2π
|k|

∫ ∞

m

dε ε

∫ ε′
max

ε′
min

dε′ ε′.

Then (9.1.9), (9.1.10) reduce to

ΠL,T (k) =
e2ñp0

m
cL,T (k) + e2

∫
dε n̄(ε)

∫ ε′
max

ε′
min

dε′
∑
ε,ε′

NL,T
ε,ε′ (ε, k)

ω − εε+ ε′ε′
, (9.1.16)

cL(k) =
ω2

|k|2 , cT (k) = −ω
2 + |k|2
2|k|2 ,

NL
ε,ε′(ε, k) =

ω2

8π2|k|3 ε
′ (ω2 − |k|2 + 4ε2 + 4εωε),

NT
ε,ε′(ε, k) = −ω

2 − |k|2
16π2|k|3 ε

′ (−4ε2k + ω2 + 2|k|2 + 4ε2 + 4εωε). (9.1.17)
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9.1.5 Relativistic quantum dispersion functions

The integrals over ε′ in (9.1.16) with (9.1.17) define a class of relativistic
quantum plasma dispersion functions (RQPDFs) of the form

S
(n)
ε,ε′(k) =

∫
dε

m

( ε
m

)n

n̄(ε) ln
(
ω − εε+ ε′ε′max

ω − εε+ ε′ε′min

)
, (9.1.18)

with n = 0, 1, 2 and where ε′max,min are defined by (9.1.15). One finds

ΠL(k) =
e2np0ω

2

m|k|2 +
e2ω2m

8π2|k|3

[
(ω2 − |k|2)S(0)(k)

−4mωS(1)(k) + 4m2S(2)(k)
]
, (9.1.19)

ΠT (k) = −e
2np0(ω2 + |k|2)

2m|k|2 − e
2(ω2 − |k|2)m

16π2|k|3

[
(−4ε2k + ω2 + 2|k|2)S(0)(k)

−4mωS(1)(k) + 4m2S(2)(k)
]
, (9.1.20)

with εk defined by (9.1.11). Only three combinations of the RQPDFs (9.1.18)
appear in the response functions:

S(0,2)(k) =
∫
dε

m

( ε
m

)0,2

n̄(ε) lnΛ1,

S(1)(k) =
∫
dε

m

( ε
m

)
n̄(ε) lnΛ2, (9.1.21)

where the logarithmic factors appear in the combinations

Λ1 =
(ε′max − ε+ ω)(ε′max − ε− ω)(ε′max + ε− ω)(ε′max + ε+ ω)
(ε′min − ε+ ω)(ε′min − ε− ω)(ε′min + ε− ω)(ε′min + ε+ ω)

, (9.1.22)

Λ2 =
(ε′max − ε+ ω)(ε′max + ε− ω)(ε′min − ε− ω)(ε′min + ε+ ω)
(ε′min − ε+ ω)(ε′min + ε− ω)(ε′max − ε− ω)(ε′max + ε+ ω)

. (9.1.23)

The three RQPDFs S(n)(k) with n = 0, 1, 2 characterize the response of an
isotropic, unmagnetized relativistic quantum electron gas.

The logarithmic functions (9.1.22), (9.1.23) may be rewritten in various
ways that are useful for different purposes. One form follows from the defini-
tion (9.1.15) of ε′max,min:

Λ1 =
4ε2ω2 − (ω2 − |k|2 − 2|p| |k|)2
4ε2ω2 − (ω2 − |k|2 + 2|p| |k|)2 , (9.1.24)

Λ2 =
4(εω + |p| |k|)2 − (ω2 − |k|2)2
4(εω − |p| |k|)2 − (ω2 − |k|2)2 . (9.1.25)

Alternative forms involve the value of the particle energy, momentum and
speed at the boundaries defined by ε′ = ε′max,min, as discussed in §9.2.
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9.1.6 Nonquantum limit

The nonquantum limit of the logarithmic factors lnΛ1, lnΛ2 is found by
expanding in powers of h̄. On including h̄ explicitly, one finds that it multiplies
the terms ω2 − |k|2 in (9.1.24), (9.1.25). On assuming ω2 − |k|2 small and
expanding in it, one finds

lnΛ1 =
ω2 − |k|2

ε

[(
1

ω − |k|v − 1
ω + |k|v

)

+
(ω2 − |k|2)2

12ε2

(
1

(ω − |k|v)3 − 1
(ω + |k|v)3

)
+ · · ·

]
,

lnΛ2 = 2 ln
(
ω + |k|v
ω − |k|v

)
+

(ω2 − |k|2)2
4ε2

(
1

(ω − |k|v)2 − 1
(ω + |k|v)2

)
+ · · · .

(9.1.26)

Note that there are corrections of first order in h̄ and that the quantum
correction terms in (9.1.26) are of order h̄2.

9.1.7 Fermi-Dirac distribution

The case of a thermal plasma is of particular importance, and this corresponds
to a Fermi-Dirac distribution for both the electrons and the positrons. The
sum of the occupation numbers of electrons and positrons is

n̄(ε) =
1

exp[(ε− µe)/T ] + 1
+

1
exp[(ε+ µe)/T ] + 1

, (9.1.27)

where T is the temperature and µe is the chemical potential for the electrons.
The RQPDFs (9.1.21) have the following forms for a thermal distribution:

S(0,2)(k) =
∑
±

∫
dε

m

( ε
m

)0,2 lnΛ1

e(ε±µe)/T + 1
,

S(1)(k) =
∑
±

∫
dε ε

m2

lnΛ2

e(ε±µe)/T + 1
, (9.1.28)

with Λ1, Λ2 given by (9.1.22), (9.1.23), respectively. The properties of these
functions are discussed in the degnerate limit in §9.3, and in the nondegenerate
limit in §9.4.
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9.2 Dissipation in isotropic quantum plasmas

Dissipation occurs in a collisionless relativistic quantum plasma due to Landau
damping (LD) and pair creation (PC). The dissipation due to a given isotropic
distribution of electrons and positrons is determined by the imaginary parts of
the longitudinal and transverse response functions. Before considering these
imaginary parts explicitly, it is useful to consider the limiting values of the
allowed resonance regions.

9.2.1 Boundary of the resonance regions

The boundaries of the resonance regions correspond to ε′ = ε′max,min in the
logarithmic functions (9.1.22), (9.1.23). On the boundaries, the resonances
occur for cos θ = p · k/|p| |k| equal to ±1, leading to the condition

ε2ω2 − εεω(ω2 − |k|2) + |k|2|p|2 + 1
4 (ω2 − |k|2)2 = 0. (9.2.1)

The solutions of (9.2.1) for |p| and ε, for given |k| and ω, determine the
limiting values for which the resonance condition can be satisfied.

To find solutions of (9.2.1), it is convenient to introduce the parameters

a = ε
ω2 − |k|2

2mω
, b =

|k| cos θ
ω

. (9.2.2)

It is also convenient to introduce the hyperbolic angle χ, with

|p| = m sinhχ, ε = m coshχ, |v| = tanhχ, (9.2.3)

and the variable t, such that one has

ε

m
=

1 + t2

1 − t2 ,
|p|
m

=
2t

1 − t2 , |v| =
2t

1 + t2
, t = tanh(1

2χ). (9.2.4)

Then (9.2.1) becomes a quadratic equation for t2:

(1 + a)2t4 − 2(1 − a2 − b2)t2 + (1 − a)2 = 0. (9.2.5)

The solutions of are

t2 = t2±, t± =
b± (a2 + b2 − 1)1/2

1 + a
. (9.2.6)

The energy, momentum and speed corresponding to these solutions are

ε±
m

=
a± b(a2 + b2 − 1)1/2

1 − b2 ,

p±
m

=
ab± (a2 + b2 − 1)1/2

1 − b2 ,

v± =
p±
ε±

=
b ± a(a2 + b2 − 1)1/2

a2 + b2
. (9.2.7)
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There are four solutions for t, and |p| = p± and |v| = v± correspond to
the solutions t = t±. The other two solutions are t = −t±, and these imply
|p| = −p± and |v| = −v±. Physically acceptable solutions must correspond
to real, positive values of |p| and |v|. When p± and v± are real, their sign
is determined by the sign of t, and either t = t±, or t = −t± is positive.
Thus only the positive solutions for t = t±, or t = −t± can be physically
relevant. In contrast, the value of ε = ε± is the same for t = −t± as for
t = t±. The requirement that ε± be positive provides an additional constraint
on the solution being physically acceptable: it is possible for neither t = t±
nor t = −t± to satisfy the requirement that ε± be positive.

9.2.2 Alternative forms of Λ1, Λ2

The logarithmic factors (9.1.22), (9.1.23) may be written in terms of the vari-
able t = tanh(1

2χ). Using t± = 1/t∓, the four solutions of (9.2.5), t = ti,
i = 1–4, may be written

t1 = t+, t2 = t−, t3 = − 1
t+
, t4 = − 1

t−
, (9.2.8)

with t± given by (9.2.6). In this notation one has

Λ1 =
(t+ t1)(t+ t2)(t+ t3)(t+ t4)
(t− t1)(t− t2)(t− t3)(t− t4)

=
(|p| + p+)(|p| + p−)
(|p| − p+)(|p| − p−)

, (9.2.9)

Λ2 =
(t+ t1)(t+ t2)(t− t3)(t− t4)
(t− t1)(t− t2)(t+ t3)(t+ t4)

=
(|v| + v+)(|v| + v−)
(|v| − v+)(|v| − v−)

. (9.2.10)

A further combination similar to Λ1, Λ2 appears in connection with the
response of a completely degenerate electron gas. It is convenient to write this
additional combination in the form

Λ3 =
(t+ t1)(t− t2)(t− t3)(t+ t4)
(t− t1)(t+ t2)(t+ t3)(t− t4)

=
(|v| + v+)(|v| − v−)
(|v| − v+)(|v| + v−)

=
(ω2 − |k|2)2(ε|k| + 2|p|εk)2 − 4m4ω2|k|2
(ω2 − |k|2)2(ε|k| − 2|p|εk)2 − 4m4ω2|k|2 , (9.2.11)

with εk defined by (9.1.11).

9.2.3 Imaginary parts of the plasma dispersion functions

The imaginary parts of the RPDFs (9.1.18) are obtained by using imposing
the causal condition, ω → ω+ i0 and the Plemelj formula (1.3.20). This gives

ImS(n)
ε,ε′(k) = −π

∫
dε

m

( ε
m

)n

n̄(ε)
∫ ε′

max

ε′
min

dε′ δ(ω − εε+ ε′ε′), (9.2.12)
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where the causal condition is used in the form

lnu = ln |u| − iπ
{

0 for u > 0,
1 for u < 0, u = ω − εε+ ε′ε′max,min. (9.2.13)

The terms with εε′ = +1 describe LD and those with εε′ = −1 describe PC.
Writing

ImS(n)
LD (k) = ImS(n)

ε ε (k), ImS(n)
PC(k) = ImS(n)

ε−ε(k), (9.2.14)

these correspond to

ImS(n)
LD (k) = −π

∫
dε εn

mn+1
n̄(ε)

∫ ε′
max

ε′
min

dε′ δ[ω − ε(ε− ε′)], (9.2.15)

ImS(n)
PC(k) = −π

∫
dε εn

mn+1
n̄(ε)

∫ ε′
max

ε′
min

dε′ δ[ω − ε(ε+ ε′)], (9.2.16)

for LD and PC, respectively. Dissipation is usually considered only for ω > 0,
and although both signs, ε = ±1, can contribute in (9.2.15), only the sign
ε = 1 gives a nonzero contribution in (9.2.16).

Explicit forms for the resonant parts are found by performing one of the
integrations over the δ-function in (9.2.15), (9.2.16). The limits of integration,
ε′ = ε′max,min, may be written in terms of the εk, defined by (9.1.11). This
follows by noting that the limiting values of the resonances in the form ε∓ω =
ε′max also correspond to ε± 1

2ω = ±εk. It is necessary to consider LD and PC
separately to determine which of these limits apply. For LD one is free to
apply a Lorentz transformation to the frame in which ω is zero to determine
the sign of the limits of integration: both ε = ±1 in (9.2.15) are allowed an
they are equivalent in this frame. One finds that the lower limit of integration
corresponds to |p| = 1

2 |k| in this frame, and that there is no solution for the
upper limit of integration. In an arbitrary frame, it is convenient to introduce
the energy variable, ε′′ = ε − 1

2εω, so that the range of integration becomes
εk < ε

′′ <∞. Then (9.2.15) gives

ImS(n)
LD (k) = − π

mn+1

∫ ∞

εk

dε′′ (ε′′ − 1
2εω)nn̄(ε′′ − 1

2 εω), (9.2.17)

with εk = [m2/(1 − ω2/|k|2) + |k|2/4]1/2. For PC both limits of integration,
ε′ = ε′max,min, are relevant, but only the resonance with ω = ε+ ε′ is allowed
for ω > 0. Writing ε′′ = 1

2ω∓ ε, the physically allowed region for PC becomes
−εk < ε′′ < εk, and (9.2.15) gives

ImS(n)
PC(k) = − π

mn+1

∫ εk

−εk

dε′′ (1
2ω − ε′′)nn̄(1

2ω − ε′′). (9.2.18)

Forms similar to (9.2.17) and (9.2.18) were written down by Tsytovich [1].
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The physically allowed region for LD in (9.2.17), ε′′ > εk, simplifies in the
classical limit when one has ε′′ → ε, εk → m/(1 − ω2/|k|2)1/2. The limit is
equivalent to the classical requirement |v| > ω/|k| for Cerenkov emission to be
allowed. The more general form of the limits in (9.2.17) modify the classical
condition by including the quantum recoil. For PC the limit of integration
−εk < ε′′ < εk corresponds to the range of allowed energies for the electron
and positron, 1

2ω − εk < ε, ε′ < 1
2ω + εk.

9.2.4 Imaginary parts of the ΠL(k), ΠT (k)

The imaginary parts of the ΠL(k), ΠT (k) can be separated into contributions
from LD and PC, by inserting (9.2.17), (9.2.18) into (9.1.12) and (9.1.13).
Dissipation due to LD gives

ImΠL
LD(k) = − e2ω2

8π|k|3
∫ ∞

εk

dε

m

[
n̄(ε+ 1

2ω) − n̄(ε− 1
2ω)
]
(4ε2 − |k|2),

ImΠT
LD(k) =

e2(ω2 − |k|2)
16π|k|3

∫ ∞

εk

dε

m

[
n̄(ε+ 1

2ω) − n̄(ε− 1
2ω)
]

×(4ε2 + 2|k|2 − 4ε2k), (9.2.19)

for the longitudinal and transverse parts, respectively. Dissipation due to PC
gives, for ω > 0,

ImΠL
PC(k) = − e2ω2

8π|k|3
∫ εk

−εk

dε

m

[
1 − n̄(1

2ω + ε)
]
(4ε2 − |k|2),

ImΠT
PC(k) =

e2(ω2 − |k|2)
4π|k|3

∫ εk

−εk

dε

m

[
1 − n̄(1

2ω + ε)
]
(ε2 + 1

2 |k|
2 − ε2k),

(9.2.20)

where the unit terms correspond to dissipation due to the vacuum polar-
ization. The vacuum polarization terms may be evaluated explicitly by per-
forming the integral, which gives contributions [ω2/(ω2 − |k|2)]ImΠ0(k2)
and ImΠ0(k2) to the longitudinal and transverse parts, respectively, with
ImΠ0(k2) given by (8.1.18). Dissipation due to PC in an electron gas is less
than the dissipation that would occur due to the vacuum contribution alone.
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9.3 Linear response of a degenerate plasma

The linear response for a nonrelativistic degenerate electron gas is relatively
well known in connection with solid-state physics; the longitudinal and trans-
verse response function were derived by Lindhard [2]. The relativistic gener-
alization of Lindhard’s result was derived by Jancovici [3]. The response of
a completely degenerate, relativistic electron gas is rederived in this section
these results using the results of §9.1.

9.3.1 Degenerate limit

The completely degenerate limit of the Fermi-Dirac distribution (9.1.27) corre-
sponds to T → 0. As degeneracy is approached, the chemical potential µe−m
decreases in magnitude, from its large negative value in the nondegenerate
limit, and for sufficiently small T , µe −m changes sign. In the completely de-
generate limit, one has µe = εF, where εF is the Fermi energy. The degenerate
limit corresponds to T � εF−m, and this limit may be treated by expanding
in powers of T/TF, where

TF = εF −m (9.3.1)

is the Fermi temperature. The distribution is degenerate for T � TF. One
also needs to expand µe/εF in powers of T � TF in this limit.

In the limit T → 0, all the states with ε < εF are filled and all those with
ε > εF are empty. There are no positrons in the completely degenerate limit.
The Fermi momentum, pF, is related to the Fermi energy by

εF = (m2 + p2F)1/2, (9.3.2)

so that all states with |p| < pF are filled, and all states with |p| > pF are
empty. This corresponds to

n̄(ε) =
{

1 for |p| < pF,
0 for |p| > pF, (9.3.3)

for each spin state. The Fermi momentum, pF, is related to the number density,
n, of electrons by

n = 2
∫

d3p

(2π)3
n̄(ε) =

p3F
3π2

. (9.3.4)

The proper number density in the completely degenerate limit is related to
the Fermi energy by

np0 = 2
∫

d3p

(2π)3
m

ε
n̄(ε) =

m3

2π2

[
εFpF
m2

− ln
(
εF + pF
m

)]
. (9.3.5)
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9.3.2 Evaluation of specific integrals

Evaluating the integrals in (9.3.13) is facilitated by introducing the variable t,
defined by (9.2.4). On changing the variable of integration to t, and performing
a partial integration, one has

S(0)(k) =
εF
m

lnΛ1F −
4∑

i=1

J (0)(tF, ti),

S(1)(k) =
ε2F

2m2
lnΛ2F − 1

2

4∑
i=1

ηiJ
(1)(tF, ti),

S(2)(k) =
ε3F

3m3
lnΛ1F − 1

3

4∑
i=1

J (2)(tF, ti), (9.3.6)

with ηi = 1 for i = 1, 2 and ηi = −1 for i = 3, 4, and with the integrals

J (n)(tF, ti) =
∫ tF

0

dt

(
1 + t2

1 − t2

)1+n( 1
t+ ti

− 1
t− ti

)
, (9.3.7)

where t = tF corresponds to ε = εF, implying

tF =
(
εF −m
εF +m

)1/2

. (9.3.8)

The integrals (9.3.7) are lengthy but elementary, and give

J (0)(tF, ti) =
1 + t2i
1 − t2i

ln
∣∣∣∣ tF + ti
tF − ti

∣∣∣∣− 2ti
1 − t2i

ln
∣∣∣∣1 + tF
1 − tF

∣∣∣∣ ,
J (1)(tF, ti) =

(
1 + t2i
1 − t2i

)2

ln
∣∣∣∣ tF + ti
tF − ti

∣∣∣∣+
(

2ti
1 − t2i

− 4ti
(1 − t2i )2

)
ln
∣∣∣∣1 + tF
1 − tF

∣∣∣∣
− 2ti

1 − t2i
2tF

1 − t2F
,

J (2)(tF, ti) =
(

1 + t2i
1 − t2i

)3

ln
∣∣∣∣ tF + ti
tF − ti

∣∣∣∣+
(

3ti
1 − t2i

− 4ti
(1 − t2i )2

)
2tF

1 − t2F

−
(

3ti
1 − t2i

− 6ti
(1 − t2i )2

+
2ti(3 + t2i )
(1 − t2i )3

)
ln
∣∣∣∣1 + tF
1 − tF

∣∣∣∣
− 2tF

(1 − t2i )2

[
2ti

(1 − t2i )

]
.

(9.3.9)

The ti are related to p± given by (9.2.7), implying

2t1,2

1 − t21,2

=
2t3,4

1 − t23,4

=
ω

2m
± ωεk

|k|m,
1 + t21,2

1 − t21,2

= −
1 + t23,4

1 − t23,4

=
|k|
2m

± ωεk
|k|m ± εk

m
.

(9.3.10)
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Using these and the relations (9.2.6), (9.2.8), the sums over i = 1–4 that
appear in (9.3.9) reduce to

4∑
i=1

1 + t2i
1 − t2i

ln
∣∣∣∣ t+ tit− ti

∣∣∣∣ =
ω

2m
lnΛ2 −

εk
m

lnΛ3,

4∑
i=1

ηi

(
1 + t2i
1 − t2i

)2

ln
∣∣∣∣ t+ tit− ti

∣∣∣∣ =
[( ω

2m

)2

+
(εk
m

)2
]

lnΛ2 −
ωεk
m2

lnΛ3,

4∑
i=1

(
1 + t2i
1 − t2i

)3

ln
∣∣∣∣ t+ tit− ti

∣∣∣∣ =
ω

2m

[( ω
2m

)2

+ 3
(εk
m

)2
]

lnΛ2

+
εk
m

[
3
( ω

2m

)2

+
(εk
m

)2
]

lnΛ3. (9.3.11)

Other relevant sums are
4∑

i=1

2ti
1 − t2i

=
4∑

i=1

4ti
(1 − t2i )2

=
2|k|
m
,

4∑
i=1

ηi
2ti

1 − t2i
= 0,

4∑
i=1

2ti(3 + t2i )
(1 − t2i )3

=
|k|
m

{
1 + 2

[( ω
2m

)2

+
(εk
m

)2
]}
,

4∑
i=1

ηi
4ti

(1 − t2i )2
=

4|k|
ω

[( ω
2m

)2

+
(
ω

|k|

)2 (εk
m

)2
]
. (9.3.12)

9.3.3 RQPDFs in the completely degenerate limit

The RQPDFs (9.1.28) in the completely degenerate limit become

S(0)(k) =
∫ εF

m

dε

m
lnΛ1, S(1)(k) =

∫ εF

m

dε ε

m2
lnΛ2,

S(2)(k) =
∫ εF

m

dε ε2

m3
lnΛ1. (9.3.13)

The integrals give [4]

S(0)(k) =
εF
m

lnΛ1F − ω

2m
lnΛ2F − εk

m
lnΛ3F +

2|k|
m

ln
(
εF + pF
m

)
,

S(1)(k) =
4ε2F − ω2 − 4ε2k

8m2
lnΛ2F − ωεk

2m2
lnΛ3F

+
ω(|k|2 + 4ε2k)

2m2|k| ln
(
εF + pF
m

)
,

S(2)(k) =
|k|εFpF

3m3
+
ε3F

3m3
lnΛ1F − ω(ω2 + 12ε2k)

24m3
lnΛ2F
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−εk(3ω2 + 4ε2k)
12m3

lnΛ3F +
|k|(2m2 + ω2 + 4ε2k)

6m3
ln
(
εF + pF
m

)
,

(9.3.14)

where ΛiF corresponds to Λi, with i = 1–3, as given by (9.1.22), (9.1.23),
(9.2.11), with |p| = pF, ε = εF. The forms (9.3.14) apply when εk, as defined
by (9.1.11), is real, which corresponds to the regions ω2 < |k|2 and ω2 >
4m2 + |k|2, where LD and PC, respectively, are allowed. In the region |k|2 <
ω2 < 4m2+ |k|2, εk is imaginary. The only change needed for (9.3.14) to apply
in this dissipation-free region is to the terms involving lnΛ3F. These need to
be replaced according to

εk lnΛ3F → 2|εk| arctan
(

4εF pF |k| |εk|(ω2 + |k|2)
4m4ω2|k|2 + (ω2 − |k|2)2(4p2F|εk|2 − ε2F|k|2)

)
,

(9.3.15)
when εk is imaginary.

9.3.4 Jancovici’s response functions

Expressions (9.1.12) and (9.1.13) with (9.3.14) reproduce the result derived
by Jancovici [3] for the longitudinal response function:

ΠL(k) =
e2ω2

4π2|k|2

{
8εFpF

3
− 2|k|2

3
ln
(
εF + pF
m

)

+
εF[4ε2F + 3(ω2 − |k|2)]

6|k| lnΛ1F +
ω[3|k|2 − ω2 − 12ε2F]

12|k| lnΛ2F

+
2m2 + ω2 − |k|2

3(ω2 − |k|2) |k|εk
ω

|ω| lnΛ3F

}
. (9.3.16)

For the transverse response function one finds

ΠT (k) = − e2

4π2

{
4ω2 + 2|k|2

3|k|2 εFpF +
2(ω2 − |k|2)

3
ln
(
εF + pF
m

)

+εF

[
ε2F(ω2 − |k|2)

3|k|3 +
4m2|k|2 + ω4 − |k|4

4|k|3

]
lnΛ1F

−ω(ω2 − |k|2)[12(ε2F − ε2k) + ω2 + 6|k|2]
24|k|3 lnΛ2F

−2m2 + ω2 − |k|2
3|k| εk

ω

|ω| lnΛ3F

}
. (9.3.17)

Note that Jancovici’s result for the transverse response function contains a
spurious overall factor ω2/(ω2 − |k|2).

The factors ΛiF are given by setting |p| = pF, ε = εF in
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boundaries ln Λ1 ln Λ2 ln Λ3

ω < εF − ε′Fmin, |k| < 2pF 0 −i2π 0

|εF − ε′Fmin| < ω < ε′Fmax − εF iπ −iπ iπ

(4m2 + |k|2)1/2 < ω < εF + ε′Fmin, |k| < 2pF 0 0 −2iπ

εF + ε′Fmin < ω < εF + ε′Fmax iπ iπ −iπ

Table 9.1. Imaginary parts of ln Λi for a completely degenerate electron gas.

Λ1 =
4ε2ω2 − (ω2 − |k|2 − 2|p| |k|)2
4ε2ω2 − (ω2 − |k|2 + 2|p| |k|)2 ,

Λ2 =
4(εω + |p| |k|)2 − (ω2 − |k|2)2
4(εω − |p| |k|)2 − (ω2 − |k|2)2 ,

Λ3 =
(ω2 − |k|2)2(ε|k| + 2|p|εk)2 − 4m4ω2|k|2
(ω2 − |k|2)2(ε|k| − 2|p|εk)2 − 4m4ω2|k|2 . (9.3.18)

The forms (9.3.16), (9.3.17) need to be modified in the dissipation-free region,
by the replacement (9.3.15) when εk is imaginary. It is implicit in (9.3.16),
(9.3.17) that the number density for a completely degenerate electron gas is
given by n = p3F/3π

2, cf. (9.3.4), and one may include the factor 3π2n/p3F on
the right hand sides to exhibit the dependence on the number density, n.

The general forms (9.3.16), (9.3.17) are rather cumbersome, and approxi-
mations need to be made in most applications. Relevant approximations are:
the nonquantum limit, in which the recoil terms are neglected; the nonrel-
ativistic approximation, where (9.3.16), (9.3.17) reduce to a result due to
Lindhard [2]; the static limit (ω → 0), where the longitudinal response func-
tion describes screening and the transverse response function is related to
the magnetic susceptibility; and, the long-wavelength limit (|k| → 0), which
determines the cutoff frequencies for longitudinal and transverse waves.

9.3.5 Dissipation due to LD and PC

The boundaries of the allowed regions for LD and PC are illustrated in Fig. 9.1.
For |k| > 2pF, one has εF < ε′Fmin; the upper and lower frequency boundaries
are ω = ε′Fmax,min−εF for LD, and ω = ε′Fmax,min+εF for PC. In this case only
ln[(ω± εF − ε′Fmax)/(ω± εF − ε′Fmin)] contribute to LD and PC, respectively,
with these factors giving an imaginary part of iπ in the region where the
argument of the logarithm is negative, and zero otherwise. For |k| < 2pF one
has εF > ε′Fmin. In this case, the zero of ω− εF + ε′Fmin occurs within the LD
region, separating regions (b) and (c) in Fig. 9.1, and the zero of ω−εF−ε′Fmin

occurs within the PC region, separating regions (e) and (f) in Fig. 9.1. It is
straightforward to determine the signs of the imaginary parts in the various
regions, and these are listed in Table 9.1.

The imaginary parts of ΠL(k) and ΠT (k) may be written down by inspec-
tion using (9.3.16) and (9.3.17), respectively, and noting the imaginary parts
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Fig. 9.1. Regions of ω–|k| space (ω > 0) are separated by curves corresponding
to the boundaries of the regions where LD is allowed, ω < |k|, and PC is allowed,
ω > (4m2 + |k|2)1/2. These are further separated into regions (a)–(h) defined for a
completely degenerate electron gas with pF/m = 1.5. For the completely degenerate
gas, LD is allowed only in regions (b) and (c), and there is no dissipation in (a)
and (d), the electron gas completely suppresses PC in (e) and partly suppresses
PC in (f); PC has its vacuum value in (g) and (h). From lower right to upper
left the curves are: ω = (ε2

F − 2pF|k| + |k|2)1/2 − εF (dashed, solid diamonds),
ω = εF−(ε2

F−2pF|k|+|k|2)1/2 (dashed, solid squares), ω = (ε2
F+2pF|k|+|k|2)1/2−εF

(dot-dashed, open squares), ω = |k| (solid, solid circles), ω = (4m2+|k|2)1/2 (dotted,
open circles), ω = (ε2

F − 2pF|k| + |k|2)1/2 + εF (double-dot-dashed, open triangles),
ω = (ε2

F + 2pF|k| + |k|2)1/2 + εF (dashed, solid triangles). (After [5])

in Table 9.1. The imaginary part of the longitudinal response in the form
written down in Refs [3] and [6] is reproduced using (9.3.16) and Table 9.1.
The imaginary parts may also be derived from (9.2.19) and (9.2.20) by setting
the occupation number equal to unity for ε < εF and zero for ε > εF, and
performing the integrals, which are elementary.

9.3.6 Neglect of the quantum recoil

The response functions (9.3.16), (9.3.17) simplify when the quantum recoil is
neglected. This corresponds to assuming ω/εF � 1, |k|/pF � 1, and retaining
only the leading terms in expansions in these quantities. The resulting approx-
imate forms were written down by Jancovici [3]:

ΠL(k) =
3e2nεFω2

|k|2p2F

{
1 − ω

2|k|vF
ln
∣∣∣∣ω + |k|vF
ω − |k|vF

∣∣∣∣
}
, (9.3.19)

ΠT (k) = − 3e2nω3

2|k|pF(ω2 − |k|2)

{
ω

|k|vF
+
(

1 − ω2

|k|2v2F

)
ln
∣∣∣∣ω + |k|vF
ω − |k|vF

∣∣∣∣
}
,

(9.3.20)
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with vF = pF/εF the Fermi speed, and where where (9.3.4) is used to include
the dependence on the number density, n = p3F/3π

2, explicitly.
The imaginary parts of the response functions may be derived from (9.2.19)

by noting that in the nonquantum limit one has

n(ε+ 1
2ω) − n(ε− 1

2ω) = ω
dn(ε)
dε

= −ωδ(ε− εF). (9.3.21)

Inserting (9.3.21) into (9.2.19) and neglecting recoil terms gives

ImΠL
LD(k) =

3πe2nω3

2|k|3p3Fm
ε2FH(εF − εk),

ImΠT
LD(k) = −3πe2n(ω2 − |k|2)ω

4|k|3p3Fm
(ε2F − ε2k)H(εF − εk), (9.3.22)

with εk = m/(1 − ω2/|k|2)1/2. The step function, which may be rewritten
H(εF − εk) = H(|k|vF − ω), implies that LD is nonzero only for ω/|k| < vF,
that is, for phase speeds less than the Fermi speed, which applies when the
quantum recoil is neglected.

9.3.7 Lindhard’s response tensor

The response functions for a nonrelativistic completely degenerate electron gas
were calculated by Lindhard [2] using nonrelativistic quantum mechanics. The
nonrelativistic result can be derived from the fully relativistic result, given by
(9.3.16), (9.3.17), by making the nonrelativistic approximation, which includes
the straightforward expansion in pF/m, e.g., εF = m+ p2F/2m.

In writing down the nonrelativistic approximation, it is convenient to in-
troduce the dimensionless parameters

u =
2mω
p2F

, q =
|k|
pF
. (9.3.23)

In ordinary units, the parameter u = h̄ω/(p2F/2m) and q = h̄|k|/pF are the
ratios of the energy and momentum of the wave quantum to the Fermi energy
and Fermi momentum, respectively. In making the nonrelativistic approxima-
tion to the logarithms in (9.3.16), (9.3.17) one rewrites ω, |k| in terms of u, q,
respectively, and retains only the lowest order terms in an expansion in pF/m.

Lindhard’s response tensor for a completely degenerate nonrelativistic elec-
tron gas is

ΠL(k) =
3e2nu2

8mq2

{
1 +

1
2q

[
1 − 1

4

(
q − u

q

)2 ]
ln
∣∣∣∣q(q + 2) − u
q(q − 2) − u

∣∣∣∣
+

1
2q

[
1 − 1

4

(
q +

u

q

)2 ]
ln
∣∣∣∣q(q + 2) + u
q(q − 2) + u

∣∣∣∣
}
, (9.3.24)
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ΠT (k) =
3e2n
8m

{
1 +

q2

4
+

3u2

4q2
− 1

2q

[
1 − 1

4

(
q − u

q

)2 ]2
ln
∣∣∣∣q(q + 2) − u
q(q − 2) − u

∣∣∣∣
− 1

2q

[
1 − 1

4

(
q +

u

q

)2 ]2
ln
∣∣∣∣q(q + 2) + u
q(q − 2) + u

∣∣∣∣
}
. (9.3.25)

The number density is given by n = p3F/3π
2, and may be introduced by

multiplying the right hand sides of (9.3.24), (9.3.25) by n3π2/p3F.
The only dissipative process in the nonrelativistic case is Landau damp-

ing: the nonrelativistic assumption excludes pair creation. The prescription
(9.2.13) implies that the imagimary parts of the respnse functions (9.3.24),
(9.3.25) are nonzero only where the argument of one of the logarithmic func-
tions is negative. For ω > 0, the arguments [q(q + 2) − u]/[q(q − 2) − u],
[q(q + 2) + u]/[q(q − 2) + u] are negative for, respectively, (ordinary units)

pF − 1
2 h̄|k| < m

ω

|k| < pF + 1
2 h̄|k|, m

ω

|k| < pF − 1
2 h̄|k|. (9.3.26)
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9.4 Linear response of a nondegenerate plasma

The linear response of a nondegenerate thermal electron gas is evaluated in
this section in terms of a relativistic plasma dispersion function, T (v, ρ), used
to describe the response in the nonquantum limit (§4.3).

9.4.1 Nondegenerate limit

The nondegenerate limit corresponds to occupation number much less than
unity: n(p) � 1. If the temperature is nonrelativistic, corresponding to T � m
(T � 0.5 × 1010 K in ordinary units), the chemical potential is given by

µe = m− T ln
(

2
nλ3

T

)
,

1
λT

=
(
mT

2π

)1/2

, (9.4.1)

where λT (= 2πh̄/(2πmkT )1/2 when h̄ is included explicitly) is the de Broglie
wavelength for a thermal particle. In the nondegenerate limit, there are very
few particles per cubic de Broglie wavelength, nλ3

T � 1, and (9.4.1) im-
plies that µe − m is large and negative, becoming increasingly negative at
T increases. In the nondegenerate limit one has exp[(ε − µe)/T ] � 1 for the
electron distribution in (9.1.27). The distribution is partially degenerate when
nλ3

T is non-negligible. The partially degenerate limit is treated by retaining
the lowest order terms in the expansion

1
e(ε−µe)/T + 1

=
∞∑

n=1

(−1)n+1en(µe−ε)/T . (9.4.2)

The ratio of positrons to electrons is negligible in a nonrelativistic ther-
mal plasma. The ratio increases with increasing T/m, and positrons can be
neglected only if µe −m, as given by (9.4.1), is small in magnitude compared
with m. In a relativistic plasma, T∼>m, this condition is not satisfied, and the
numbers of electrons and positrons are similar, with an excess of electrons for
µe > 0 and an excess of positrons for µe < 0. A pure pair plasma corresponds
to µe = 0, implying identical distribution of electrons and positrons.

In the nondegenerate limit, the Fermi-Dirac distribution (9.1.27) for elec-
trons reduces to the Jüttner distribution,

n(ε) = Ae−ε/T , A = eµe/T . (9.4.3)

The positrons can be neglected in a nonrelativistic plasma, T � m, and in
a highly relativistic plasma, the contribution of the positrons is included by
writing

n̄(ε) = Ae−ε/T , A = eµe/T + e−µe/T = 2 cosh(µe/T ). (9.4.4)
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Normalization of the Jüttner distribution (9.4.3) is usually to the number
density, n, of electrons in the rest frame. The number density and the proper
number density, np0, are given in terms of the occupation number by

n = 2
∫

d3p

(2π)3
n(p), np0 = 2

∫
d3p

(2π)3
m

ε
n(p), (9.4.5)

respectively. The corresponding expressions for the normalization factor, A,
in (9.4.3) are

A =
π2ρ np0

m3K1(ρ)
=

π2ρ n

m3K2(ρ)
, (9.4.6)

with ρ = m/T the inverse temperature in units of the rest energy.

9.4.2 Dispersion functions in the nondegenerate limit

Inserting the Jüttner distribution (9.4.3) into the expressions (9.1.21) for
S(0)(k), S(1)(k), S(2)(k), gives (9.1.28) without the unit terms in the denomi-
nators. The resulting expressions may be written in terms of the integral

I(t, ρ) =
∫ 1

−1

dt′

t′ − t exp
[
−ρ 1 + t′2

1 − t′2

]
, (9.4.7)

and its derivatives with respect ρ = m/T . The three RQPDFs (9.1.28) become

S(0)(k) = −A
4∑

i=1

I(ti, ρ)
ρ

, S(1)(k) = A
∂

∂ρ

4∑
i=1

ηi
I(ti, ρ)
ρ

,

S(2)(k) = −A ∂
2

∂ρ2

4∑
i=1

I(ti, ρ)
ρ

, (9.4.8)

with ti defined by (9.2.8) and with ηi = 1 for i = 1, 2 and ηi = −1 for i = 3, 4.
It is more convenient to introduce velocities, vi = 2ti/(1 + t2i ), and to write
the four solutions i = 1–4 in terms of the ± solutions written down in (9.2.6).
Using the expressions (9.2.6), one finds v1 = −v3 = v+, v2 = −v4 = v−, with
v± given by (9.2.7).

9.4.3 Evaluation in terms of T (v, ρ)

The integrals (9.4.8) may be written in terms of the relativistic plasma disper-
sion function introduced in §4.3 for a nonquantum relativistic thermal plasma.
This is the function

T (v, ρ) =
∫ 1

−1

dv′

v′ − v exp(−ργ′), (9.4.9)
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with γ′ = (1 − v′2)−1/2. The function T (v, ρ) satisfies the identities (4.4.2)–
(4.4.4). To relate I(t, ρ), as defined by (9.4.7), to T (v, ρ), first rewrite (9.4.9)
in terms of the variable t, with v = 2t/(1 + t2), γ = (1 + t2)/(1 − t2). This
gives

T (v, ρ) =
1 + t2

1 − t2
∫ 1

−1

dt′
1 − t′2
1 + t′2

(
1

t′ − t −
1

t′ − 1/t

)
exp

(
−ρ1 + t′2

1 − t′2

)
.

(9.4.10)
Differentiating with respect to ρ gives

∂T (v, ρ)
∂ρ

= −1 + t2

1 − t2
∫ 1

−1

dt′
(

1
t′ − t −

1
t′ − 1/t

)
exp

(
−ρ1 + t′2

1 − t′2

)
= −γ

[
I(t, ρ) − I(1/t, ρ)

]
. (9.4.11)

A further identity follows by differentiating (9.4.7) with respect to ρ, using
(4.4.2) and

∂I(t, ρ)
∂ρ

= −1 + t2

1 − t2 I(t, ρ) −
2t

1 − t2 K0(ρ). (9.4.12)

Thus one finds

I(t, ρ) + I(1/t, ρ) = T (v, ρ),

I(t, ρ) − I(1/t, ρ) = − 1
ργ3v

[T ′(v, ρ) + 2γ2ρK1(ρ)]. (9.4.13)

9.4.4 Dispersion functions for nondegenerate plasma

The identities (9.4.13), together with the fact that I(−t, ρ) = −I(t, ρ) is an
odd function of t, enable one to express the RQPDFs (9.4.8) in terms of
T (v±, ρ). The sum over the four values of ti is re-expressed as sum over the
±-values given by (9.2.6). The factor γ in (9.4.13) is positive by definition, and
this needs to be taken into account by including the sign σ± of γ± explicitly.
One finds

S(0)(k) =
A

ρ

∑
±

σ±
γ±v±

(
1 − v2±
ρ

T ′(v±, ρ) + 2K1(ρ)
)
,

S(1)(k) =
A

ρ

∑
±

[
−T (v±, ρ)

ρ
+

1
v±

(
1 − v2±
ρ

T ′(v±, ρ) + 2K1(ρ)
)]
,

S(2)(k) =
A

ρ

∑
±

σ±
γ±v±

{(
2
ρ2

+ γ2
±

)(
1 − v2±
ρ

T ′(v±, ρ) + 2K1(ρ)
)

−2γ2
±v

2
±K1(ρ) −

2
ρ
γ2
±v±

[
T (v±, ρ) + 2v±K0(ρ)

]}
, (9.4.14)

with T ′(v±, ρ) = ∂T (v±, ρ)/∂v± and with A given by (9.4.3), or by (9.4.4) if
the contribution of positrons is included. Substituting (9.4.14) into (9.1.12)
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and (9.1.13) gives explicit expressions for the longitudinal and transverse parts
of the linear response tensor for a nondegenerate electron gas.

9.4.5 Nonquantum limit

To obtain the nonquantum approximation, the dispersion functions (9.4.14)
are expanded about their classical limits. This gives

S(0)(k) =
ωA

mv

[
vT (v, ρ) + 2K0(ρ)

]
,

S(1)(k) =
2A
ρ2v

[
− vT (v, ρ) + (1 − v2)T ′(v, ρ) + 2ρK1(ρ)

]
,

S(2)(k) =
ωA

mv

[
γ2vT (v, ρ) + 2γ2(1 + v2)K0(ρ) +K2(ρ)

]
, (9.4.15)

with v = ω/|k|, γ = (1 − v2)−1/2. Inserting the resulting expressions into
(9.1.12), (9.1.13) gives the classical expressions for ΠL(k), ΠT (k), cf. (4.3.5),
(4.3.6).

9.4.6 Lowest order quantum corrections

The lowest order corrections to in the nondegenerate limit to the classical
expressions (4.3.6) are of order h̄2. The corrections to this order to the plasma
dispersion functions are

δS(0)(k) =
Aω3

24m3v3γ4

[
ρ2v3γ4 T (v, ρ) + 3T ′(v, ρ)

+2ρ2v2γ4K0(ρ) + 2ργ2K1(ρ)
]
,

δS(1)(k) =
Aω2

4m2v3γ2

[
(1 + v2)γ2T (v, ρ) + vT ′(v, ρ) + 4vγ2K0(ρ)

]
,

δS(2)(k) =
Aω3

24m3v3γ4

[
2vγ2(3+v2+ρ2v2γ2)T (v, ρ)+γ2(3+4γ2)T ′(v, ρ)

+4γ4(1+2v2)K0(ρ)+γ6v2(1+v2)ρ2K0(ρ)+(3/2)γ2ρK1(ρ)
]
. (9.4.16)

In ordinary units, these quantum corrections are of order (h̄ω/mc2)2 smaller
than the nonquantum result.

The foregoing results are derived in the region ω2 < |k|2 where LD is
possible, and the functions v± are real. In the dissipation-free range |k|2 ≤
ω2 ≤ 4m2 + |k|2, the functions v±, are complex, with v− = v∗+, due to εk
being imaginary. The sums over ± and the property

T (v∗, ρ) = T ∗(v, ρ) (9.4.17)

ensures that the plasma dispersion functions S(n)(k) are real. The expansion
in powers of h̄ remains valid below the threshold for pair creation, ω2 <
4m2 + |k|2.
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9.4.7 High temperature limit

The high temperature limit corresponds to ρ = m/T → 0. The leading terms
in an expansion in ρ give

S(0)(k) = 0, S(1)(k) =
π2ρ n̄

m3

2∑
±

ln
[
γ± + (γ2

± − 1)1/2
]
,

S(2)(k) =
π2ρ n̄|k|
m4

. (9.4.18)

These imply the following approximations to the response functions:

ΠL(k) =
e2ρn̄ω2

m|k|2

(
1 − ω

2|k|
∑
±

ln
∣∣∣γ± + (γ2

± − 1)1/2
∣∣∣
)
,

ΠT (k) = −e
2n̄p0

m
− ω

2 − |k|2
2ω2

ΠL(k), (9.4.19)

with γ± given by (9.2.7). The result (9.4.19) was derived by Tsytovich [1].

9.4.8 Nearly nondegenerate limit

The foregoing calculations apply only in the strictly nondegenerate limit. One
may expand the electron contribution in (9.1.27) in powers of exp(−µe/T ),
and repeat the calculation for each term to express the exact result as an
infinite sum. The basic expansion is

n(ε) =
∞∑

r=1

(−1)r−1Ar exp(−rε/T ), (9.4.20)

where A is defined in (9.4.3). The normalization, to either the number density,
n, in the rest frame or to the proper number density, np0, gives

[np0, n] =
m3

π2

∞∑
r=1

(−1)r−1Ar exp(rµe/T )
rρ

[K1(rρ),K2(rρ)]. (9.4.21)

Applying the same expansion to the RQPDFs gives

S(0)(k) =
∞∑

r=1

Ar

rρ

∑
±

σ±
γ±v±

(
1 − v2±
rρ

T ′(v±, rρ) + 2K1(rρ)
)
,

S(1)(k) =
∞∑

r=1

Ar

rρ

∑
±

[
−T (v±, rρ)

rρ
+

1
v±

(
1 − v2±
rρ

T ′(v±, rρ) + 2K1(rρ)
)]
,

S(2)(k) =
∞∑

r=1

Ar

rρ

∑
±

σ±
γ±v±

{(
2
r2ρ2

+ γ2
±

)(
1 − v2±
rρ

T ′(v±, rρ) + 2K1(rρ)
)

−2γ2
±v

2
±K1(rρ) −

2
rρ
γ2
±v±

[
T (v±, rρ) + 2v±K0(rρ)

]}
, (9.4.22)
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The nondegenerate case (9.4.14) is reproduced by retaining only the term r =
1 in the sums in (9.4.22). The first order corrections due to partial degeneracy
is found by retaining the terms with r = 2.
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9.5 Dispersion in isotropic plasmas

The linear response tensor determines all effects associated with dispersion
in a medium, including the dispersion relations and the damping of waves,
the screening of charges, and the magnetic susceptibility. In this section these
effects are discussed for isotropic plasmas, including relativistic and quantum
effects.

9.5.1 Debye-like screening

The longitudinal response has a well-known simple form in the static (ω → 0)
limit for a nonrelativistic thermal plasma: KL(ω,k) = 1 + µ0Π

L(ω,k)/ω2,
reduces to KL(0,k) = 1 + 1/|k|2λ2

D, where λD is the Debye length. In the
nonrelativistic limit, T/m = V 2 � 1 may be interpreted as a mean square
thermal speed, and in the highly relativistic case T/m� 1 may be interpreted
as a characteristic Lorentz factor of a thermal particle.

A similar result applies to a nonrelativistic, degenerate electron gas. In
the Thomas-Fermi theory one has KL(0,k) = 1 + k2

0/|k|2, where k0 is the
Thomas-Fermi wave vector,

k2
0 = µ0e

2 ∂n

∂µe
= µ0e

2 εFpF
π2

, (9.5.1)

where n is the number density and µe is the chemical potential, and where the
final form applies for a completely degenerate Fermi distribution, n = p3F/3π

2,
µe = εF.

The potential, φ(r), for a charge q at rest at the origin, r = 0, in a
medium is found by noting that its spatial Fourier transform is φ̃(k) =
q/ε0|k|2KL(0,k), where q/ε0|k|2 is the Fourier transform of the (Coulomb)
potential in the absence of the medium. Inverting the Fourier transform im-
plies that the potential due to a charge q is

φ(r) =
q e−k0r

4πε0
, (9.5.2)

with k0 → 1/λD for a nondegenerate thermal plasma.

9.5.2 Friedel oscillations in relativistic degenerate plasmas

The general form of screening is determined by the form of the static limit
of the longitudinal response function. The inclusion of relativistic effects in
the nondegenerate limit does not affect the form of Debye screening, but
degeneracy does. The static longitudinal response for a completely degenerate
electron gas follows from the limit ω → 0 in (9.3.16), which gives
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KL(0,k) = 1 +
µ0e

2

4π2|k|2

{
8εFpF

3
− 2|k|2

3
ln
(
εF + pF
m

)

+εF
4ε2F − 3|k|2

3|k| ln
∣∣∣∣2pF + |k|
2pF − |k|

∣∣∣∣− 2εk
2m2 − |k|2

3|k| ln
∣∣∣∣εF|k|+2pFεk
εF|k|−2pFεk

∣∣∣∣
}
,

(9.5.3)

with εk = (m2+|k|2/4)1/2 for ω = 0. The form (9.5.3) reduces to the Thomas-
Fermi form only for sufficiently small |k|, that is, it reduces to KL(0,k) = 1+
k2
0/|k|2, with k0 given by (9.5.1). At larger |k| the the logarithmic singularity

needs to be taken into account, and it determines the form of the screening
at large r.

The nonrelativistic limit of (9.5.3) corresponds to u → 0 in Lindhard’s
response function (9.3.24):

KL(0,k) = 1 +
2µ0e

2mpF
3π2|k|2

(
1 +

4p2F − |k|2
4pF|k|

ln
∣∣∣∣2pF + |k|
2pF − |k|

∣∣∣∣
)
. (9.5.4)

The logarithmic singularity at |k| = 2pF in (9.5.4) is called the Kohn singu-
larity, which occurs for h̄|k| equal to the diameter, 2pF, of the so-called Fermi
sphere (radius pF in momentum space). This singularity is known to cause
spatial oscillations, called Friedel oscillations [7], in the screening at large r.
A corresponding singularity occurs in the relativistic case: the final two log-
arithmic factors in (9.5.3) are both singular at |k| = 2pF. It follows that the
functional form of the screening in the relativistic case has no new features
compared with the nonrelativistic case, which is Thomas-Fermi like screening
at small distances and Friedel oscillations at large distances.

The Kohn singularity at |k| = 2pF in (9.5.3) or in (9.5.4) may be isolated
by setting |k| = 2pF except in the singular terms. The response function is of
the form

KL(0,k) ≈ β − αξ ln
1
|ξ| , ξ =

|k| − 2pF
2pF

, (9.5.5)

with α = µ0e
2εF/12π2|k|, and with β given by setting |k| = 2pF in the non-

singular terms in (9.5.3), and including the contribution toKL(0,k) from ions
or other charged particles.

At large distances the Kohn singularity determines the form of the screen-
ing, and this form is the same in the relativistic and nonrelativistic cases. The
actual form of the potential is [8] (in ordinary units)

φ(r) ≈ q

4πε0
αh̄2

2β2p2F

cos(2pFr/h̄)
r3

, (9.5.6)

which exhibits the Friedel oscillations. The result (9.5.6) applies to a rela-
tivistic degenerate electron gas, with the parameters α, β modified to include
relativistic effects, as discussed above.
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9.5.3 Magnetic susceptibility of an electron gas

The magnetic susceptibility, χ(m), is related to ΠT (k) − ΠL(k) through
(1.6.18). In the long-wavelength limit one has

χ(m)

1 + χ(m)
= lim

|k|→0
lim
ω→0

µ0[ΠT (k) −ΠL(k)]
|k|2 . (9.5.7)

On inserting the expressions (9.1.19) and (9.1.20) with (9.1.21), (9.1.22) and
taking the static limit before making the long-wavelength approximation, one
finds

χ(m)

1 + χ(m)
=
µ0e

2

12π2

∫
dε

|p| n̄(ε). (9.5.8)

The integral in (9.5.8) may be evaluated explicitly in the completely de-
generate and the nondegenerate thermal limits. For a completely degenerate
electron gas one has

χ(m) =
µ0e

2

6π2
ln
εF + pF
m

. (9.5.9)

In the nonrelativistic limit the logarithmic factor in (9.5.9) is replaced by
pF/m, and (9.5.9) reduces to a well-known result. The increase of χ(m) with
density, ∝ pF ∝ n1/3 in the nonrelativistic case, slows to a logarthmic increase
in the relativistic case.

The magnetic susceptibility for a nondegenerate relativistic thermal elec-
tron gas follows by evaluating the integral in (9.5.8) for a (Jüttner) distribu-
tion, cf. (9.4.3). This gives∫

dε

|p| n̄(ε) =
π2n ρK0(ρ)
m3K2(ρ)

. (9.5.10)

In the nondegenerate case, the susceptibility decreases with increasing temper-
ature, ∝ 1/T in the nonrelativistic regime, and ∝ (1/T 3) lnT in the relativistic
regime.

The magnetic susceptibility is attributed to the sum of two contributions,
one from Pauli spin paramagnetism and the other from Landau diamagnetism.
These two contributions are of the same form, with the former being three
times greater than the latter and of opposite sign, that is, they are related
by χLandau = − 1

3χPauli, χPauli = 3
2χ

(m), which is the same in a relativistic
plasma [9] as in a nonrelativistic plasma.

9.5.4 Cutoff frequency

The cutoff frequency for a particular wave mode, M , is defined by the disper-
sion relation ω = ωM (k) the limit k → 0. In an isotropic gas there are cutoff
frequencies for both longitudinal and transverse modes, and in a nonquantum
gas these two cutoff frequencies are equal to each other. In the nonrelativistic



9.5 Dispersion in isotropic plasmas 399

limit, the cutoff frequency is equal to the plasma frequency, and relativistic
effects reduce the cutoff frequency to below the plasma frequency. Note that
there are three frequencies that are the same in the nonrelativistic limit and
are different when relativistic effects are included: the cutoff frequency, the
plasma frequency and the proper plasma frequency. Different definitions of
these frequencies are used by some authors. Here the cutoff frequency and the
plasma frequency are defined in the rest frame of the plasma, and the proper
plasma frequency, which is an invariant, is defined analogous to the plasma
frequency with the number density in the rest frame replaced by the proper
number density. In a relativistic plasma, the cutoff frequency is closer to the
proper plasma frequency than to the plasma frequency, but it is not equal to
the proper plasma frequency.

The dispersion relations for longitudinal and transverse waves are

ω2 + µ0Π
L(k) = 0, ω2 − |k|2 + µ0Π

T (k) = 0, (9.5.11)

respectively. These are equivalent to

KL(ω,k) = 1 +
µ0Π

L(k)
ω2

= 0, KT (ω,k) = 1 +
µ0Π

T (k)
ω2

= n2, (9.5.12)

respectively, where n = |k|/ω is the refractive index.
The cutoff correspond to the long wavelength limit, which is given by

expanding the RQPDFs, S(0)(k), S(1)(k), S(2)(k), in powers of |k|. Start-
ing from the forms (9.1.22), (9.1.23), the expansion is facilitated by writing
lnΛ1 = lnA+ + lnA−, lnΛ2 = lnA+ − lnA−, with

A± =
ε2 ± 2|p||k| + |k|2 − (ε∓ ω)2

ε2 ∓ 2|p||k| + |k|2 − (ε∓ ω)2
. (9.5.13)

To lowest order in an expansion in |k|, (9.1.19), (9.1.20) give

ΠL(k) = ΠT (k) = −4e2m
3π2

∫
dε|p| n̄(ε) 3ε2 − |p|2 − 3ω2/4

4ε2 − ω2
. (9.5.14)

The cutoff frequencies, ωc, for longitudinal and transverse waves are de-
termined by ω → ωc, |k| → 0 in (9.5.11) with (9.5.14). This gives

ω2
c =

4µ0e
2

3π2

∫
dε|p| n̄(ε) 3ε2 − |p|2 − 3ω2

c/4
4ε2 − ω2

c

. (9.5.15)

Although (9.5.15) is an implicit equation for ω2
c , it is straightforward to solve

it by expanding the integrand in powers of ω2
c/4ε2, which is valid for ωc � 2m,

that is, provided the cutoff frequency is well below the pair creation thresh-
old. The cutoff frequency reduces to the plasma frequency only in the nonrel-
ativistic limit. In the relativistic case it is intermediate between the plasma
frequency and the proper plasma frequency, defined by ω2

p0 = µ0e
2np0/m,

approaching the latter in the extreme relativistic limit.
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Fig. 9.2. Dispersion curves for Langmuir waves for ρ = 5, 1, 0.5, 0.1.

9.5.5 Waves in nondegenerate thermal plasmas

Compared with the relativistic modifications to the properties of waves in a
nonrelativistic thermal plasma, the additional modifications due to relativistic
quantum effects are minor in the nondegenerate case. In an isotropic, nonrel-
ativistic, nondegenerate, thermal electron gas, Langmuir waves have a cutoff
at the plasma frequency and a dispersion relation that may be approximated
by ωL(k) ≈ ωp + 3|k|2V 2

e /2ωp, with V 2
e = 1/ρ = T/m. This approximate

dispersion relation is valid only for |k|λDe = Ve/ωp∼<1, and the Langmuir
mode ceases to exist at significantly larger |k|. The dispersion relation for
transverse waves is ωT (k) = (ω2

p + |k|2)1/2, which corresponds to a refractive
index n = (1 − ω2

p/ω
2)1/2. These dispersion relation are strongly modified by

relativistic effects (§4.5). In particular, the cutoff frequency, ωc, decreases as
the plasma becomes more relativistic; for a thermal plasma ωc decreases with
increasing T/m = 1/ρ∼>1 in accord with (4.5.5).

One quantum modification to the wave dispersion is due to the quantum
recoil. However, as the following argument shows, this effect is unimportant
except at extreme densities. To first order in h̄, the quantum recoil modifies
the Landau damping rate; this modification may be treated semiclassically
by replacing the resonant condition, ku = 0, by ku − k2/2m = 0 in the clas-
sical theory. The dispersion curves for Langmuir and transverse waves are
affected only to second order in h̄. Near the cutoff frequency, for either lon-
gitudinal or transverse waves, one has ω � |k| implying a correction term
(k2/2m)2/(ku)2 ≈ (ω/2mγ)2. For transverse waves, the dispersion curve does
not cross the light line, and ku cannot be zero. At sufficiently high frequencies
the dispersion curve approaches k2 = ω2

p0, where ωp0 is the proper plasma fre-
quency. It follows that the quantum recoil affects the dispersion of transverse
waves only in superdense plasmas where the plasma frequency is comparable
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Fig. 9.3. Dispersion curves for transverse waves in a relativistic thermal plasma are
plotted for the indicated values of ρ.

with the electron rest mass. The equality ωp = m corresponds to an electron
density ne = 2 × 1038 m−3.
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9.6 Waves in completely degenerate electron gas

Elementary properties of longitudinal waves in nonrelativistic degenerate
plasma have long been known in connection with plasmons in solid-state theo-
ries. In this section these known properties are reviewed briefly, and compared
with the results derived using Jancovici’s response tensor (9.3.16) for a rela-
tivistic degenerate electron gas. Transverse waves in a relativistic, degenerate
electron gas are discussed briefly.

9.6.1 Langmuir waves in degenerate electron gas

An approximate dispersion relation for longitudinal waves in a completely de-
generate nonrelativistic electron gas was derived by Vlasov [10]. In Vlasov’s
approximation quantum effects are neglected, in which case Lindhard’s re-
sponse tensor (9.3.20) reduces to

KL(k) = 1 +
3ω2

c

|k|2v2F

(
1 − ω

2|k|vF
ln
∣∣∣∣ω + |k|vF
ω − |k|vF

∣∣∣∣
)
. (9.6.1)

To rederive Vlasov’s result, one expands in |k|vF/ω and sets the resulting
expression to zero. This gives

ω2 = ω2
c

(
1 +

3
5
|k|2v2F
ω2

+ · · ·
)
. (9.6.2)

The dispersion relation (9.6.2) applies only for sufficiently small |k|.
At larger |k|, the singularity in the logarithmic term in (9.6.1) is ap-

proached, and it dominates the functional dependence such that the solution
approaches ω = |k|vF from above. The full theory allows no solution at suffi-
ciently high frequency [3], and the existence of a maximum frequency becomes
apparent when the quantum recoil is included explicitly [11]. The quantum
recoil terms allows the dispersion curve to cross the line ω = |k|vF, reach a
maximum frequency and turn over, as illustrated in Fig. 9.4.

An analytic treatment of the dispersion around the maximum frequency is
available in the nonrelativistic case [11]. Lindhard’s response function (9.3.24)
may be written

KL(k) = 1 +
ω2

p

ω2

u2

2q2

{
1 +

∑
±

± (u± q2)2 − 4q2

8q3
ln
∣∣∣∣u± q2 + 2q
u± q2 − 2q

∣∣∣∣
}
, (9.6.3)

with u = h̄ω/(p2F/2m), q = h̄|k|/pF in ordinary units. The terms u ± q2 =
h̄(ω ± h̄|k|2/2m)/(p2F/2m) include the quantum recoil in the nonrelativistic
limit. The approximate dispersion relation ω = |k|vF for zero sound corre-
sponds to u = 2q, and is derived by neglecting these recoil terms. When
the recoil term is neglected, the dispersion relation is confined to the region



9.6 Waves in completely degenerate electron gas 403

xx

x

x

Fig. 9.4. The longitudinal dispersion relation for a completely degenerate electron
gas with pF/m = 0.05.

u > 2q, where there is no Landau damping, but when the recoil term is in-
cluded the dispersion curve crosses into the region where Landau damping.
The crossing point, q = q1, is

q1 =
1

2M

[
3
2

ln
(

4M
e

)]1/2

, M =
p2F

2mh̄ωp
. (9.6.4)

The maximum frequency occurs at a slightly larger value of q, with 4M re-
placed by 8M in the argument of the logarithm in (9.6.4) [11].

An example of the dispersion curve in shown in Fig. 9.4, in which Landau
damping is neglected. The dispersion curves are double-valued. The neglect
of Landau damping is justified only for the branch to the left of the turnover.
The branch to the right of the turnover corresponds to zero sound.

9.6.2 Longitudinal response function

The generalization to longitudinal waves in a relativistic, completely degen-
erate electron gas is illustrated in Figs. 9.4 and 9.7, which are derived using
Jancovici’s longitudinal response function (9.3.16). The response function con-
tains three different logarithmic factors, whose arguments vanish at pF = p±
or pF = −p±, cf. (9.2.9) and (9.2.11). (The response function varies as x ln |x|
in the neighborhood of such a zero at x → 0.) These points correspond to
resonances.

The actual values of p± follow from (9.2.7)

p±
m

=
|k|
2m

± ω

2m

(
ω2 − 4m2 − |k|2
ω2 − |k|2

)1/2

. (9.6.5)

At ω = 0 one has p+ = p− = |k|/2. As ω increases, p+ increases and p−
decreases. For |k| < 2pF, as ω increases from zero, the logarithms have their
first singularity at p+ = pF, and they become singular again at p− = −pF;
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Fig. 9.5. ReΠL(k) is shown as a function of ω for |k| = 0.1m, separated into two
parts: (a) the LD regime (ω < |k|) where dissipation occurs in the shaded regions and
is due to the degenerate electron gas, and (b) the PC regime (ω > (4m2 + |k|2)1/2)
where PC due to the degenerate gas completely suppresses the vacuum PC below
the short dashed line, partially suppresses the vacuum PC between the two dashed
lines, and makes no contribution to the vacuum PC above the long dashed line.

for |k| > 2pF, the logarithms have their first singularity at p− = pF, and their
second singularity at p− = −pF. These logarithmic singularities are related
to LD. There is a second pair of signularities of the logarithms above the
threshold for pair creation, ω > (4m2 + |k|2)1/2, and these are related to PC.
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Fig. 9.6. A plot of log |Re µ0Π
L(k)/m2| for pF/m = 0.5 and |k|/m = 0.1. (a)

The overall form of the response function; the cusps correspond to points where
Reµ0Π

L(k) passes through zero. (b) The LD region in more detail. (c) The PC
region in more detail. The vertical lines define the different regions in the LD and
PC regimes.

These features are illustrated for |k| > 2pF in Fig. 9.5 where ΠL(k) is
shown as a function of ω, for a nonrelativistic pF = 0.05m and a relatively
large |k| = 0.75m. The overall variation is shown in Fig. 9.6a by plotting
ln |ΠL(k)|, with the points at which ΠL(k) changes sign indicated by vertical
lines. The two pairs of cusp-like features associated with LD and PC are
apparent. The vertical lines drawn in Fig. 9.6b,c correspond to the points
where the logarithms are singular, and it is evident that the function is finite
and continuous at these points. The first of the vertical lines in Fig. 9.6b
corresponds to p− = pF, and the second to pF = −p−. The vertical lines
correspond to the boundaries of the allowed dissipation regions, as in Fig. 9.5.
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Fig. 9.7. The longitudinal dispersion relation for the Jancovici (solid) form and
Lindhard (small dashed) form for (left) pF/m = 0.5 and (right) pF/m = 5. The
Jancovici and Lindhard forms are aligned along ω = |k|vF with vF = pF/εF (solid
straight line) and vF = pF/m (long dashed line), respectively. For pF/m = 5, the
cutoff frequency for the Jancovici form (solid curve) is obviously much lower than
for the Lindhard form (long dashed curve); these are given by ωc, cf. (9.6.6), and
ωp, respectively.

As ω is increased further, the square root in (9.6.5) becomes imagi-
nary at ω = |k| and it remains imaginary in the dissipation-free range
|k| < ω < (4m2 + |k|2)1/2. The longitudinal response function, ΠL(k), is
continuous at ω = |k| and it is small, negative and featureless over most of
the dissipation-free region |k| < ω < (4m2 + |k|2)1/2. It is continuous but
rapidly varying near the upper limit, ω ≈ (4m2 + |k|2)1/2, where it changes
sign and increases abruptly in magnitude, as illustrated in Fig. 9.5c. Above
the pair creation threshold, ω > (4m2 + |k|2)1/2, there are another two points
where the logarithms are singular, at pF = ±p−, as indicated by the vertical
lines in Fig. 9.5d. These features are robust, and apply not only for specific
values of |k| and pF chosen here, but for any case with |k| > 2pF.

The form of the longitudinal response tensor for |k| < 2pF is somewhat
different, in that the relative positions of the downward-pointing and upward-
pointing cusp-like features associated with LD are reversed compared with
pF < |k|/2.

9.6.3 Longitudinal waves including relativistic effects

The longitudinal modes calculated using the fully relativistic (Jancovici) and
the nonrelativistic (Lindhard) response tensors are almost indistinguishable
when the Fermi momentum is nonrelativistic (pF � m), as illustrated in
Fig. 9.4b. These dispersion curves are compared in Fig. 9.7 as relativistic
effects become increasingly important. An obvious difference between the rel-
ativistic and nonrelativistic cases in Fig. 9.4 is the mean slope of the dispersion
curve, which is ω/|k| ≈ vF, with vF = pF/m in the nonrelativistic case, and
with vF = pF/εF = pF/(m2 + p2F)1/2 in the relativistic case.
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Fig. 9.8. The dispersion relations for the transverse mode for the Jancovici (solid)
and Lindhard (small dashed) forms for pF/m = 5, with the cold plasma dispersion
curve (long dashed) included for comparison. The Lindhard form jumps from the
cold-plasma form to close to the Jancovici form for small |k|.

Another change from the nonrelativistic case is in the value of the cutoff
frequency. For a completely degenerate distribution, the integral in (9.5.15),
for ωc � 2m, gives

ω2
c =

µ0e
2m

3π2

∫ pF

0

d|p||p|2
ε3

(3ε2 − |p|2) =
µ0e

2mp3F
3π2εF

. (9.6.6)

The result (9.6.6) may be derived by expanding Jancovici’s expressions
(9.3.16), (9.3.17) for the response functions in powers of |k| for ω2 � m2

and using ω2
c = ΠL(k)/ε0 in the limit |k| → 0 for ω2

c � m2. The nonrelativis-
tic approximation corresponds to εF = m in (9.6.6), and the dashed curves in
(9.7) approach this nonrelativistic value for |k| → 0.

9.6.4 Superdense plasmas

Dispersion relations for transverse waves are illustrated in Fig. 9.8 for three
values of pF. There is a cutoff frequency, ωc, with the dispersion curve increas-
ing monotonically with increasing |k| and ω > ωc, asymptotically approaching
the light line at sufficiently large ω, |k|. These properties are closely analogous
to those of transverse waves in a nondegenerate plasma, where the asymptotic
form for the dispersion relation is ω2 = ω2

p0+ |k|2, with ωp0 the proper plasma
frequency.

A controversial point is whether PC is possible for waves in a superdense
plasma, where ‘superdense’ implies ωp∼>m. Tsytovich [1] assumed that the
cutoff frequency could exceed the threshold for PC, ωc > 2m, and that there is
a portion of the dispersion curve just above the cutoff frequency in the region
where PC is allowed. Tsytovich’s discussion was for an arbitrary electrons
gas, and were not restricted to the completely degenerate case. In Ref. [12] it



408 9 Isotropic quantum plasmas

was pointed out that PC has important implications for the plasma process
for neutrino emission from dense plasmas. However, their claim that PC is
allowed was disputed in Ref. [13]. It was pointed out in Ref. [14] that the PC
threshold is εF +m, rather than 2m, because the only available electron states
are above εF. Fig. 9.1 shows that there is a dispersion-free region in the range
2m < ω < m+ εF, but only for |k| = 0: this region shrinks with increasing |k|
and is absent for |k| > 2pF. In superdense plasmas, although the dispersion
curve has its cutoff in the dispersion-free region 2m < ω < m + εF, it enters
the region where PC is allowed at a higher |k|. When PC is allowed, a photon
can decay into a pair and a pair can annihilate into a single photon.

The conclusion that PC is possible in a superdense plasma is subject to a
proviso concerning the neglect of macroscopic mass renormalization (§10.4).
The modification of the mass of the electron was central to the original criti-
cism [13], but has been ignored in most subsequent discussions.
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Spin, MMR and neutrino plasma

The spin of an electron is not uniquely defined in Dirac’s theory, and one needs
to identify a specific spin operator in order to discuss spin dependence. Suit-
able choices should commute with the Dirac Hamiltonian, and should have
well-defined properties under a Lorentz transformation. Three such spin oper-
ators are discussed here: the helicity, and the magnetic-moment and electric-
moment operators. Simultaneous eigenvalues each of these operators and of
the Hamiltonian are constructed, and these are used to derive spin-dependent
vertex functions. The response tensor for spinless particles (which are spin 0
bosons) is different from the response tensor for unpolarized electrons.

The presence of a medium modifies the properties of particles through
macroscopic mass renormalization (MMR ). The ‘dispersion relations’ for
electrons and positrons differs from ε = (m2 + p2)1/2 due to the contribution
from MMR. In most applications this modification is small and can ignored or
treated as a perturbation. When the weak interactions are taken into account,
MMR modifies the dispersion relation for neutrinos, and this can be impor-
tant in neutrino mixing. Collective effects also lead to induced electromagnetic
properties, allowing neutrinos to act like charged particles in interacting with
waves in the plasma.

Spin operators are defined and eigenfunctions of them are constructed in
§10.1. The eigenfunctions are used to construct vertex functions and these are
used to treat spin-dependence of the response tensor in §10.2. Dispersion in
bosonic plasmas is considered in §10.3. MMR for electrons is discussed in §10.4.
MMR for neutrinos is discussed in §10.5, and the induced electromagnetic
properties of neutrinos are discussed in §10.6.
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410 10 Spin, MMR and neutrino plasma

10.1 Spin operators and eigenfunctions

A relativistically acceptable spin operator should satisfy two criteria: it should
commute with the Dirac Hamiltonian, so that the spin eigenstates do not pre-
cess, and it should have clearly defined properties under a Lorentz transforma-
tion. Three such spin operators are identified in this section, and simultaneous
eigenfunctions of the Dirac Hamiltonian and each choice of spin operator are
constructed.

10.1.1 Conserved quantities and constants of the motion

Conserved quantities and constants of the motion play an important role in
any dynamical theory, and this is of particular relevance here in connection
with spin operators. The spin operator, σµν = 1

2 [γµ, γν], that arises naturally
in the Dirac theory, does not commute with the Dirac Hamiltonian, and so
is not a constant of the motion. A general procedure for modifying any given
operator so that the modified operator has eigenvalues are constants of the
motion was developed in Ref. [1, 2].

Consider an arbitrary operator F̂ . If F̂ does not commute with the Hamil-
tonian, Ĥ , one can use it to construct related operators that do commute
with the Hamiltonian. For example, ĤF̂ + F̂ Ĥ commutes with the Hamilto-
nian, and hence its eigenvalues are constants of the motion. However, if F̂ has
well defined properties under a Lorentz transformation (it is an invariant, a
4-vector or a 4-tensor), these properties are not preserved in its replacement
by ĤF̂ + F̂ Ĥ . One also requires that the redefined operator be chosen such
that it corresponds to a conserved quantity.

To illustrate the construction of a conserved quantity in the Dirac theory,
consider the energy-momentum tensor (6.3.6) in the form

T µν(x) = Ψ †(x)T̂ µν Ψ(x), T̂ µν = γ0
(
γµP̂ ν

)
. (10.1.1)

The continuity equation ∂µT
µν(x) = 0 implies that the 4-momentum of the

field.
P ν(x) = T 0ν(x) = Ψ †(x)p̂ν Ψ(x), (10.1.2)

is conserved. The operator T̂ 0ν = p̂ν commutes with the Hamiltonian and
hence is a constant of the motion. Now consider the arbitrary operator F̂ .
The objective is to modify F̂ so that the modified operator is conserved in
this sense. To this end, note that the quantity

fµ(x) = − i

2m

[(
∂µΨ †(x)

)
γ0F̂ Ψ(x) − Ψ †(x)γ0F̂

(
∂µΨ(x)

)]
(10.1.3)

satisfies ∂µf
µ(x) = 0 by construction. Hence f0 is a conserved quantity. Using

the Dirac equation and its adjoint, (10.1.3) reduces to
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fµ(x) =
1

2m
Ψ †(x)

[
p̂µγ0F̂ + γ0F̂ p̂µ

]
Ψ(x). (10.1.4)

By construction, the µ = 0 component of the operator on the right hand side
corresponds to a constant of the motion. Thus, any given operator F̂ , implies
an operator

ˆ̃F =
1

2m
(Ĥγ0F̂ + γ0F̂ Ĥ) (10.1.5)

that commutes with the Hamiltonian and corresponds to a conserved quantity.

10.1.2 Spin operators

The spin operator σµν is a 4-tensor, and the spin operator ŵµ = 1
4 [γµ, /̂p]γ5

is a 4-vector. The operator constructed from σµν that is a constant of the
motion is [1, 2]

σ̃µν =
1

2m

[
Ĥγ0σµν + γ0σµνĤ

]
, (10.1.6)

where p̂0 is identified as the Hamiltonian Ĥ . The 4-vector ŵµ is already a
constant of the motion, and applying the operation (10.1.6) to it leaves it
unchanged.

The tensor constructed in (10.1.6) is interpreted in terms of electric- and
magnetic-moment operators [1, 2]. This is a generalization of the relation
between the spin and the magnetic moment in the nonrelativistic theory.
Writing µ̂ for the magnetic-moment operator and d̂ for the corresponding
electric-moment operator, one identifies them by writing

σ̃µν =
i

m

⎛
⎜⎜⎝

0 −d̂x −d̂y −d̂z

d̂x 0 µ̂z −µ̂y

d̂y −µ̂z 0 µ̂x

d̂z µ̂y −µ̂x 0

⎞
⎟⎟⎠ . (10.1.7)

One finds

d̂ = 1
2

[
Ĥγ0iα + γ0iαĤ

]
, µ̂ = 1

2

[
Ĥγ0σ + γ0σĤ

]
. (10.1.8)

Explicit evaluation is facilitated by using the standard representation, cf.
(6.1.23). The result, in representation-free form, is

d̂ = γ0σ × p̂, µ̂ = mσ − iγ × p̂, (10.1.9)

where σ and γ are 3-vector forms for the Pauli and Dirac matrices. By
construction, all six components of these two vector operators commute with
the Hamiltonian.

The 4-vector operator ŵµ, defined by (6.2.20), is already a constant of the
motion, and explicit evaluation of it gives

ŵ0 = σ · p̂, ŵ = −γ5 p̂ +mγ0σ. (10.1.10)

The time-component ŵ0 is the helicity operator. It follows that the helicity is
a constant of the motion and hence is an acceptable spin operator.
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10.1.3 Preferred spin operator in a magnetic field

The spin operators implied by (10.1.9), (10.1.10) commute with the Hamilto-
nian by construction, and are constants of the motion, but only in the absence
of an electromagnetic field. In the presence of an electromagnetic field the pos-
sible choice of acceptable spin operators is much more restricted because of
evolution of the operators (10.1.9), (10.1.10) due to the field.

Two changes need to be made in including a static electromagnetic field.
First, the Hamiltonian acquires an additional term, in accord with the min-
imum coupling assumption. Second, the minimum coupling assumption also
needs to be applied to the operators (10.1.9), (10.1.10) themselves. These
changes lead to the following equations for the temporal evolution of the op-
erators:

d d̂

dt
= i[Ĥ, d̂],

dµ̂

dt
= i[Ĥ, µ̂],

dŵµ

dt
= i[Ĥ, ŵµ]. (10.1.11)

On including the electromagnetic field on the right hand sides of these equa-
tions, explicit evaluation gives

dd̂

dt
= ieγ × B + eγ0 σ × E, (10.1.12)

dµ̂

dt
= eγ0 σ × B − ieγ × E, (10.1.13)

for the electric-moment and magnetic-moment operators, respectively. In the
presence of an electrostatic field along the z-axis, d̂z is a constant of the
motion, and in the presence of a magnetostatic field along the z-axis, µ̂z is
a constant of the motion. The classical counterparts of (10.1.12), (10.1.13)
describe the precession of the dipole moments in an electromagnetic field.

Explicit evaluation of (10.1.11) for the components of ŵµ give

dŵ0

dt
= −eσ · E, dŵ

dt
= eγ5 E − eσ × B. (10.1.14)

It follows that the helicity, ŵ0, is a constant of the motion in the absence of
an electrostatic field.

10.1.4 Helicity eigenfunctions

The helicity operator is σ · p̂. In writing down explicit forms for the helicity
eigenstates, it is convenient to write the 3-momentum in cylindrical polar
coordinates,

p = (p⊥ cosφ, p⊥ sinφ, pz). (10.1.15)

The helicity operator becomes
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σ · p̂ = ε

⎛
⎜⎜⎝

pz p⊥e−iφ 0 0
p⊥eiφ −pz 0 0

0 0 pz p⊥e−iφ

0 0 p⊥eiφ −pz

⎞
⎟⎟⎠ . (10.1.16)

The helicity operator is proportional to the sign ε of the energy, and its eigen-
values are written here as σh, with σ = ±1 and h = |p| = (p2z + p2⊥)1/2

independent of ε. (Below σ is used to denote the ‘spin’ eigenvalue for helicity
and s for the ‘spin’ eigenvalue for the magnetic-moment operator.) The desired
eigenfunctions are simultaneous eigenfunctions of (10.1.16), with eigenvalue
σ|p|, and of the Hamiltonian operator,

Ĥ = α · p̂ + βm = ε

⎛
⎜⎜⎝

εm 0 pz p⊥e−iφ

0 εm p⊥eiφ −pz

−pz −p⊥e−iφ −εm 0
−p⊥eiφ pz 0 −εm

⎞
⎟⎟⎠ , (10.1.17)

with eigenvalue εε. A specific choice for the helicity states is

ϕε
s(εp) =

1√
2|p|2εV

⎛
⎜⎜⎝
α+β+

σεα+β−
σεα−β+

α−β−

⎞
⎟⎟⎠ ,

α± =
√
ε± εm, β± =

√
|p| ± εσpz e

∓iφ/2). (10.1.18)

The relative phase factors between the different eigenstates (with ε = ±1 and
σ = ±1) are arbitrary, and a specific choice is made for convenience.

In the nonrelativistic limit, |p| � m, the solutions (10.1.18) reduce to

ϕε
s(εp) =

1
2m

√
V

×

⎡
⎢⎢⎣
⎛
⎜⎜⎝

2m cos(α/2)e−iφ/2

2m sin(α/2)eiφ/2

|p| cos(α/2)e−iφ/2

|p| sin(α/2)eiφ/2

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

2m sin(α/2)e−iφ/2

−2m cos(α/2)eiφ/2

−|p| sin(α/2)e−iφ/2

|p| cos(α/2)eiφ/2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

|p| sin(α/2)e−iφ/2

−|p| cos(α/2)eiφ/2

−2m sin(α/2)e−iφ/2

2m cos(α/2)eiφ/2

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

|p| cos(α/2)e−iφ/2

|p| sin(α/2)eiφ/2

2m cos(α/2)e−iφ/2

2m sin(α/2)eiφ/2

⎞
⎟⎟⎠
⎤
⎥⎥⎦ , (10.1.19)

for an electron (ε = 1) with σ = ±1 and a positron (ε = −1) with σ = ±1,
respectively, and with pz = |p| cosα. The relative phases of the four solutions
are arbitrary.

In the ultrarelativistic limit, |p| → ε� m, (10.1.18) reduces to
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ϕε
s(εp) =

1
2
√
V

⎛
⎜⎜⎜⎝

√
1 + εσ cosα e−iφ/2

σε
√

1 − εσ cosα eiφ/2

σε
√

1 + εσ cosα e−iφ/2

√
1 − εσ cosα eiφ/2

⎞
⎟⎟⎟⎠ , (10.1.20)

with pz = |p| cosα.
The direction of the axis in (10.1.15) is arbitrary, and are chosen for con-

venience. In particular, one usually thinks of the helicity as the projection
of the spin along the direction of the momentum of the particle. One is free
to choose the axis along p so that one has p⊥ = 0, φ = 0, h = |pz|. The
wavefunction has only two nonzero components:

ϕε
s(εp) =

1√
2εV

⎡
⎢⎢⎢⎣σ + εP

2

⎛
⎜⎜⎜⎝

√
ε+ εm

0
P
√
ε− εm
0

⎞
⎟⎟⎟⎠+

σ − εP
2

⎛
⎜⎜⎜⎝

0√
ε+ εm

0
−P

√
ε− εm

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ ,

(10.1.21)
with P = pz/|pz|. The arbitrariness in the phase of the independent solutions
is used to include an extra sign σε in the solution for σ = −εP compared with
(10.1.18).

10.1.5 Eigenstates of the magnetic-moment operator

If the electrons are polarized by a magnetic field, the polarization states cor-
respond to eigenfunctions of the component of the magnetic-moment operator
µ̂ along B. The eigenvalues of

µ̂z = ε

⎛
⎜⎜⎝
εm 0 0 p⊥e−iφ

0 −εm −p⊥eiφ 0
0 −p⊥e−iφ εm 0

p⊥eiφ 0 0 −εm

⎞
⎟⎟⎠ (10.1.22)

are denoted by sλ with s = ±1 and λ = (m2 + p2⊥)1/2. The identities

p⊥ =
√
λ+ sm

√
λ− sm, pz = P

√
ε+ εsλ

√
ε− εsλ, P = pz/|pz|,

(10.1.23)
are used in rewriting the wavefunctions in a convenient form. A specific choice
of simultaneous eigenfunctions of (10.1.17) and (10.1.22) is

ϕε
s(εp) =

1√
2ε2λV

⎛
⎜⎜⎝

a+b+
−Pεs a−b−

P a−b+
εs a+b−

⎞
⎟⎟⎠ ,

a± =
√
ε± εsλ, b± =

√
λ± sme∓iφ/2. (10.1.24)
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A particular choice of the relative phases in (10.1.24) is made for convenience
in writing.

In the nonrelativistic limit, the solutions (10.1.24) reduce to

ϕε
s(εp) =

1
2m

√
V

⎡
⎢⎢⎣
⎛
⎜⎜⎝

2m
0
pz

p+

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝

0
2m
p−

−pz

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝
pz

p+
2m
0

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝
p−

−pz

0
2m

⎞
⎟⎟⎠
⎤
⎥⎥⎦ , (10.1.25)

with p± = p⊥e±iφ, and where only the first order terms in p/m are re-
tained. The two solutions (10.1.25) for a nonrelativistic electron reproduce
the nonrelativistic approximation to wavefunctions (6.2.15). The wavefunc-
tions (10.1.25) have an obvious symmetry between positrons and electron
states that is absent from the wavefunctions (6.2.15).

In the ultrarelativistic limit, the solutions (10.1.24) reduce to

ϕε
s(εp) =

1
2
√
V

⎛
⎜⎜⎝

√
1 + εs sinα e−iφ/2

−Pεs
√

1 − εs sinα eiφ/2

P
√

1 − εs sinα e−iφ/2

εs
√

1 + εs sinα eiφ/2

⎞
⎟⎟⎠ , (10.1.26)

with λ→ p⊥ → ε sinα in this limit.

10.1.6 Eigenstates of the electric-moment operator

A choice of spin operator that is appropriate when the particles are polarized
by an electric field is the z-component of the electric-moment operator,

d̂z = −iε

⎛
⎜⎜⎝

0 p⊥e−iφ 0 0
−p⊥eiφ 0 0 0

0 0 0 −p⊥e−iφ

0 0 p⊥eiφ 0

⎞
⎟⎟⎠ . (10.1.27)

The eigenvalues of this spin operator are s̃p⊥ with s̃ = ±1. Simultaneous
eigenfunctions of this operator and of the Hamiltonian (6.1.28) are

ϕε
s(εp) =

1√
4εV

⎛
⎜⎜⎝

√
ε+ εme−i(εs̃θ+φ)/2

iεs̃
√
ε+ εme−i(εs̃θ−φ)/2

√
ε− εm ei(εs̃θ−φ)/2

−iεs̃
√
ε− εm ei(εs̃θ+φ)/2

⎞
⎟⎟⎠ , (10.1.28)

where spherical polar coordinates are used with pz = |p| cos θ, p⊥ = |p| sin θ,
and with |p| =

√
ε+ εm

√
ε− εm.
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10.2 Spin-dependent electron gas

In this section, explicit expressions for the vertex function are written down
for two of the choices of spin operator (helicity, and magnetic moment) made
in §10.1. The vertex function also allows one to evaluate the spin-dependent
part of the response tensor (10.2.20), and this is done for an isotropic plasma
containing electrons with a preferred helicity.

10.2.1 Vertex function for helicity eigenstates

The vertex function is defined by (6.7.13) and it depends on the choice of
spin eigenfunctions. For the helicity eigenstates (10.1.18), the vertex function
(6.7.13) becomes

[
Γ ε′ε

σ′σ(p′,p)
]µ =

1
4(p′ε′pε)1/2

×

⎧⎪⎪⎨
⎪⎪⎩

[α′+α+ +Σα′−α−][β′+β+ e
−i(φ−φ′)/2 +Σβ′−β− ei(φ−φ′)/2],

[α′+α− +Σα′−α+][β′+β− ei(φ+φ′)/2 +Σβ′−β+ e
−i(φ+φ′)/2],

−i[α′+α− +Σα′−α+][β′+β− e
i(φ+φ′)/2 −Σβ′−β+ e

−i(φ+φ′)/2],
σε[α′+α− +Σα′−α+][β′+β+ e

−i(φ−φ′)/2 −Σβ′−β− ei(φ−φ′)/2]

⎫⎪⎪⎬
⎪⎪⎭

(10.2.1)

where the following quantities are introduced:

α′± = (ε′ ± ε′m)1/2, α± = (ε± εm)1/2,

β′± = (p′ ± ε′σ′p′z)1/2, β± = (p± εσpz)1/2, Σ = ε′σ′εsσ. (10.2.2)

The eigenvalues of the helicity operator are written σp, with σ = ±1 and
p = |p|, and similarly for the primed variables.

10.2.2 Vertex function for magnetic-moment eigenstates

For the magnetic-moment eigenstates, inserting (10.1.24) into (6.7.13) gives,
in place of (10.2.1),

[
Γ ε′ε

s′s(p
′,p)

]µ =
1

4(λ′ε′λε)1/2

×

⎧⎪⎪⎨
⎪⎪⎩

[β′+β+ e
−i(φ−φ′)/2 +Σβ′−β− ei(φ−φ′)/2][α′+α+ + P ′Pα′−α−],

[εsβ′+β− ei(φ+φ′)/2 + ε′s′β′−β+ e
−i(φ+φ′)/2][α′+α+ − P ′Pα′−α−],

−i[εsβ′+β− ei(φ+φ′)/2 − ε′s′β′−β+ e
−i(φ+φ′)/2][α′+α+ − P ′Pα′−α−],

P [β′+β+ e
−i(φ−φ′)/2 +Σβ′−β− e

i(φ−φ′)/2][α′+α− + P ′Pα′−α+]

⎫⎪⎪⎬
⎪⎪⎭

(10.2.3)

where the following quantities are introduced:
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α′± = (ε′ ± ε′s′λ′)1/2, α± = (ε± εsλ)1/2,

β′± = (λ′ ± s′m)1/2, β± = (λ± sm)1/2, Σ = ε′s′εs, (10.2.4)

and where the eigenvalues of the magnetic-moment operator are written as
sλ, with s = ±1, λ = (m2 + p2⊥)1/2, and with P ′ = p′z/|p′z|, P = pz/|pz|.

10.2.3 General properties of the vertex function

One symmetry property of the vertex function follows from the definition
(6.7.9): the complex conjugate of (6.7.9) satisfies

[γε′ε
q′q(k)]∗µ = [γεε′

qq′ (−k)]µ. (10.2.5)

This implies that the vertex function introduced in (6.7.12) satisfies[
Γ ε′ε

s′s(p′,p)
]∗µ =

[
Γ εε′

ss′ (p,p′)
]µ
, (10.2.6)

where ε′p′ = εp − k is implicit.
A second relation satisfied by the vertex function is relevant to the charge-

continuity and gauge-invariance relations. The vertex function plays a current-
like role in the theory, and actual currents satisfy kµJ

µ = 0. The vertex
function satisfies

(ε′p′µ − εpµ)
[
Γ ε′ε

s′s(p
′,p)

]µ = 0, (10.2.7)

which implies kµ

[
Γ ε′ε

s′s(p′,p)
]µ = 0, provided that the resonance condition in

the form ε′p′µ = εpµ − kµ = 0 is satisfied. If one regards ε′p′ = εp − k as
a definition of p′, the resonance condition takes the form ε′ε′ = εε − ω, and
(10.2.7) implies

kµ

[
Γ ε′ε

s′s(p
′,p)

]µ = (ω − εε+ ε′ε′)
[
Γ ε′ε

s′s(p
′,p)

]0
. (10.2.8)

The right hand side vanishes only when the resonance condition ω−εε+ε′ε′ =
0 is satisfied. It is possible to redefine the vertex function so that the charge-
continuity relation is satisfied, by making the replacement[

Γ ε′ε
s′s(p′,p)

]µ →
[
Γ̃ ε′ε

s′s(p′,p)
]µ =

[
Γ ε′ε

s′s(p′,p)
]µ − kµkα

[
Γ ε′ε

s′s(p′,p)
]α
.

(10.2.9)
It is not found convenient to make this replacement here.

10.2.4 Spin dependence in Cerenkov emission

In the classical theory of Cerenkov emission of transverse waves in an isotropic
medium the emitted radiation is linearly polarized along the projection of the
momentum of the electron on the plane orthogonal to k. In the quantum case
the emitting electron can be (spin-)polarized, and this affects the polarization
of the emitted radiation.
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For the helicity eigenstates, the vertex function has the explicit form
(10.2.1), in which the momentum p is written in cylindrical coordinates about
an axis that is arbitrary. One is free to choose the axis along p, with pz = |p|.
Suppose that the initial electron has spin up (ε = 1, σ = 1). Then one has
β+ = (2h)1/2, β− = 0. Although the momentum, p′ = p − k, of the final
electron is not along the same direction in general, for |k| � |p| an expansion
in |k|/|p| may be performed, giving β′+ = (2h′)1/2, β′− = 0 for σ′ = 1 and
β′+ = 0, β′− = (2h′)1/2 for σ′ = −1. Inspection of (10.2.1) shows that the 3-
vector Γ++

σ′σ(p′,p) is along (0, 0, 1) for σ′ = 1 and is along (1, i, 0) for σ′ = −1.
The case σ′ = σ corresponds to a transition without a spin flip and σ′ = −σ
corresponds to a transition with a spin flip. It follows that Cerenkov emission
for a non-spin-flip transition is polarized in the same way as in the classical
case, which corresponds to Γ ∝ p. The probability for a transition with a
(helicity) spin flip is proportional to |e∗

M · (1, i, 0)|2; for transverse waves this
corresponds to an elliptical polarization with axial ratio cos θ, where θ is the
angle between k and p. The dominance of the non-spin-flip transition over
the spin-flip transition may be attributed to the factor α′+α− + Σα′−α+ in
Γ; when the quantum recoil is neglected, this factor is equal to 2α+α− when
there is no spin flip (Σ = 1) and is zero when there is a spin flip (Σ = −1).
Thus, the quantum recoil must be included in order for the rate of spin-flip
transitions to be nonzero.

As a second example, consider emission by a nonrelativistic electron in an
eigenstate of the magnetic-moment operator. The vertex function in this case
is given by (10.2.3). The 3-vector components may be written in the form

Γ++
s′s (p′,p) =

1
2m
{

1
2 (1 + s′s)

[
p′−s + ps, is(p′−s − ps), p′z + pz

]
− 1

2s(1 − s′s)
[
p′z − pz, is(p′z − pz),−p′s + ps

]}
, (10.2.10)

with ps = p⊥eisφ, p′s = p′⊥eisφ′
. For a non-spin-flip transition (10.2.10) gives

Γ = (1/2m)[p + p′ − isb× (p− p′)], where b = (0, 0, 1) is a unit vector along
the direction of the axis, and with p′ = p − k this becomes Γ = (1/m)[p −
1
2k + i 12sb × k]. For a spin-flip transition one has Γ ∝ (kz , iskz,−kx − isky)
and the polarization vector is e ∝ Γ. This is an elliptical polarization with
axial ratio cos θ.

Spin-flip transitions in Cerenkov emission occur at a rate that is smaller
than for non-spin-flip transitions by a factor of order |k|2/|p|2. It follows
that spin-flip transitions are significant only when |k|2/|p|2 is non-negligible.
However, in practice one has |k|2 � |p|2 whenever the Cerenkov condition is
satisfied, so that spin-flip transitions never occur at a rate comparable with
non-spin-flip transitions.

10.2.5 Spin dependent form of Πµν(k)

The response tensor (8.3.5) and the other forms identified in §8.3 apply to
unpolarized electrons and positrons. If the particles are polarized, one needs
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to use a different approach in deriving explicit forms for the response tensor.
The vertex formalism is convenient for this purpose. One needs to choose a
specific spin operator and to assume that the occupation numbers, nε

s(p), is
defined for the spin eigenvalues of this operator.

To illustrate the use of the vertex formalism, consider the evaluation of
the vacuum polarization tensor: the response tensor for the polarized electron
gas follows by replacing the propagators by their statistically averaged coun-
terparts. The vertex formalism leads to the following form for the vacuum
polarization response tensor:

Πµν(k) = −ie2
∑

ε,s,ε′,s′

∫
d4P

(2π)4

∫
d4P ′

(2π)4
(2π)4δ4(P ′ − P + k)

×
[
Γ ε′ε

s′s(P ′,P )
]µ[
Γ ε′ε

s′s(P ′,P )
]∗ν
[
−iε′δ(P ′0 − ε′ε′)

P 0 − εε +
−iεδ(P 0 − εε)
P ′0 − ε′ε′

]
.

(10.2.11)

The inclusion of the statistical average in the propagators leads to the addi-
tional terms in (8.2.14) involving the occupation numbers. This gives

Πµν(k) = −ie2
∑

ε,s,ε′,s′

∫
d4P

(2π)4

∫
d4P ′

(2π)4
(2π)4δ4(P ′ − P + k)

[
πε′ε

s′s(p
′,p)

]µν

×
[
−iε′δ(P ′0 − ε′ε′)

P 0 − εε [1 − 2nε′
s′(p′)] +

−iεδ(P 0 − εε)
P ′0 − ε′ε′ [1 − 2nε

s(p)]
]
,

(10.2.12)

where the product of vertex functions is written as[
πε′ε

s′s(p
′,p)

]µν =
[
Γ ε′ε

s′s(p
′,p)

]µ[
Γ ε′ε

s′s(p′,p)
]∗ν
, (10.2.13)

with P ′ = ε′p′, P = εp. On performing the integrals over P 0, P ′0, (10.2.12)
gives

Πµν(k) = −e2
∑

ε,s,ε′,s′

∫
d3p

(2π)3

∫
d3p′

(2π)3
(2π)3δ3(ε′p′ − εp + k)

×
1
2 (ε′ − ε) + εnε

s(p) − ε′nε′
s′(p′)

ω − εε+ ε′ε′ + i0
[
πε′ε

s′s(p
′,p)

]µν
. (10.2.14)

The term involving 1
2 (ε′ − ε) is the vacuum polarization term.

The relation between the forms (10.2.14) and (8.3.5) is established by car-
rying out the sums in (10.2.13). First, assuming that the occupation numbers
are independent of the spin, one sums over the spins. One has

[
πε′ε

s′s(p
′,p)

]µν =
∑
s,s′
V 2ϕ̄ε′

s′(ε′p′) γµϕε
s(εp)ϕ̄ε

s(εp) γνϕε′
s′(ε′p′),



420 10 Spin, MMR and neutrino plasma

and hence ∑
s,s′

[
πε′ε

s′s(p
′,p)

]µν =
Fµν(εp̃, ε′p̃′)
εε′εε′

, (10.2.15)

where the sums are performed using (6.2.12), and the definition (8.3.3) is used.
In this way (10.2.14) reproduces (8.3.5).

10.2.6 Separation of spin-dependent part

A separation into spin-independent and spin-dependent parts involves sepa-
rating the occupation number into spin-averaged and spin-specific terms, by
writing

nε(p) = 1
2 [nε

+(p) + nε
−(p)], ∆nε(p) = 1

2 [nε
+(p) − nε

−(p)]. (10.2.16)

Then in (10.2.14) one has∑
s′s

nε
s(p)

[
πε′ε

s′s(p
′,p)

]µν = nε(p)[π̄ε′ε]µν +∆nε(p)[∆πε′ε]µν ,

∑
s′s

nε′
s′(p′)

[
πε′ε

s′s(p
′,p)

]µν = nε′(p′)[π̄ε′ε]µν +∆nε′(p′)[∆′πε′ε]µν , (10.2.17)

[π̄ε′ε]µν =
∑
s,s′

[
πε′ε

s′s(p
′,p)

]µν
, [∆πε′ε]µν =

∑
s,s′
s
[
πε′ε

s′s(p
′,p)

]µν
,

[∆′πε′ε]µν =
∑
s,s′
s′
[
πε′ε

s′s(p
′,p)

]µν
. (10.2.18)

The linear response tensor (10.2.14) separates into a spin-independent
part, Πµν

in , and a spin-dependent part Πµν
sd , with

Πµν(k) = Πµν
in (k) +Πµν

sd (k). (10.2.19)

For the spin-independent part, the response tensor reduces to the forms dis-
cussed in §8.3 for unpolarized electrons. The spin-dependent part of the re-
sponse tensor is

Πµν
sd (k) = −e2

∑
ε,ε′

∫
d3p

(2π)3
ε∆nε(p)

ω − εε+ ε′ε′ + i0
[
∆πε′ε(p′,p,k)

]µν

+e2
∑
ε,ε′

∫
d3p′

(2π)3
ε′∆nε′(p′)

ω − εε+ ε′ε′ + i0
[
∆′πε′ε(p′,p,k)

]µν
. (10.2.20)

The functions [∆πε′ε]µν , [∆′πε′ε]µν depend explicitly on the choice of the spin
operator.
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10.2.7 Response of an isotropic polarized electron gas

The response of an isotropic gas of unpolarized electrons has no rotatory part.
The assumptions of isotropy and spin-dependence are compatible in the case of
helicity-dependent electrons, which have a preferred handedness. The response
of a helicity-polarized, isotropic electron gas has a nonzero rotatory part,
analogous to the response of an optically active medium such as a solution of
dextrose.

In evaluating the spin-dependent part, (10.2.20), of the response tensor,
one uses the vertex function for the helicity eigenstates given by (10.2.1) with
(10.2.2). The nonzero components of [∆πε′ε]µν and [∆′πε′ε]µν , cf. (10.2.18),
give the helicity-dependent part of the response tensor

Πµν
sd (k) = −ie2k2

∑
ε

∫
d3p

(2π)3
ε∆nε(p)

(pk)2 − (k2/2)2
bµν(k, p),

b01 =
kzpy − kypz

|p| , b02 =
kxpz − kzpx

|p| , b03 =
kypx − kxpy

|p| ,

b12 =
ωεpz − kz |p|2

|p|ε , b13 =
ky|p|2 − ωεpy

|p|ε , b23 =
ωεpx − kx|p|2

|p|ε ,

(10.2.21)

with pk = ωε− p · k, k2 = ω2 − |k|2.
It follows directly from (10.2.21) that the spin-dependent contribution of

an isotropic helicity-dependent electron gas is rotatory. To see this, choose k
along the z-axis (kx = 0, ky = 0, kz = |k|) in the rest frame of the electron
gas. In the denominator of the integrand in (10.2.21) one has p · k = pz|k|,
so that the integrals over terms proportional to px or py in bµν give zero. The
only nonzero term in (10.2.21) is b12 = −b21. By inspection, the only nonzero
component of Rµν for k along the z-axis in the rest frame is the 12-component,
completing the proof.

An explicit expression for the helicity-dependent rotatory part is

ΠR(k) = −
∑

ε

e2

(2π)2

∫ ∞

0

d|p| ε∆n(ε)
ε|v| |k|2

{

[
ωε(ωε− 1

2k
2) − |p|2|k|2

]
ln
[
ωε− 1

2k
2 + |p| |k|

ωε− 1
2k

2 − |p| |k|

]

−
[
ωε(ωε+ 1

2k
2) − |p|2|k|2

]
ln
[
ωε+ 1

2k
2 + |p| |k|

ωε+ 1
2k

2 − |p| |k|

]}
. (10.2.22)

The difference, ∆n+(ε) − ∆n−(ε), between the spin-dependent parts of the
electron and positron occupation number appears because it is implicit that
the handedness of a positron is opposite to that of an electron.
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10.3 Response tensor for bosonic plasmas

In this section by calculating the response tensor is calculated for a gas of
spin 0 bosons and for a gas of unpolarized spin 1 bosons. A plasma of de-
generate bosons develops a Bose-Einstein condensate, and the contribution
of such a condensate to the response tensor leads to dispersive effects that
have no counterpart in an isotropic degenerate electron gas. In particular,
intrinsically new wave modes (roton-like and pair modes) can exist.

10.3.1 Response tensor for a spin 0 gas

The counterpart of QED for spinless (spin 0) particles is referred to as scalar
electrodynamcis (SED). A notable change from QED is the existence of a
second order term in the interaction Lagrangian, described by the seagull
diagram Fig. 7.1.

In deriving the linear response tensor for the spin 0 gas the contribution
from the contracted seagull diagram, Fig. 10.1, needs to be added to that from
the bubble diagram Fig. 7.7. In SED, the bubble diagram contributes

Πµν
bub(k) =

q2

m

∫
d4P

(2π)4
d4P ′

(2π)4
(2π)4 δ4(P ′ − P + k)

×(Pµ + P ′µ) (P ν + P ′ν)
[
N(P )
P ′2 −m2

+
N(P ′)
P 2 −m2

]
. (10.3.1)

The seagull diagram contributes

Πµν
gull(k) = −2q2

m
gµν

∫
d4P

(2π)4
N(P ). (10.3.2)

The total response tensor is given by the sum of (10.3.1) and (10.3.2):

Πµν
(0)(k) =

q2

m

∫
d4P

(2π)4
d4P ′

(2π)4
(2π)4 δ4(P ′ − P + k)

×
{

(Pµ + P ′µ) (P ν + P ′ν)
[
N(P )
P ′2 −m2

+
N(P ′)
P 2 −m2

]
− 2gµνN(P )

}
.

(10.3.3)

On performing the integral over P ′, one has

Πµν
(0)(k) =

q2

m

∫
d4P

(2π)4

{
(2Pµ − kµ) (2P ν − kν)

×
[

N(P )
(P − k)2 −m2

+
N(P − k)
P 2 −m2

]
− 2gµνN(P )

}
, (10.3.4)

which is the counterpart of the first form in (8.3.1) for an electron gas. An
alternative form is
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e

γ γ

Fig. 10.1. A single electron loop is obtained from a seagull diagram by joining the
ends of the electron lines. A factor of 1/2 needs to be included in the amplitude for
such closed loops.

Πµν
(0)(k) =

q2

m

∫
d4P

(2π)4
N(P )

×
[
(2Pµ − kµ) (2P ν − kν)

(P − k)2 −m2
+

(2Pµ + kµ) (2P ν + kν)
(P + k)2 −m2

− 2gµν

]
, (10.3.5)

which is the counterpart of the form in (8.3.5) for an electron gas.
The contributions from the bosons and anti-bosons have the same form,

and may be added together. This follows by inspection of the expression
in square brackets in (10.3.5), which is even under P → −P . This im-
plies that integrand of (10.3.5) is unchanged by the replacement N(P ) →
1
2 [N(P ) + N(−P )], and hence Πµν

(0)(k) depends only on the sum of the oc-
cupation numbers of the bosons and anti-bosons. In the following discussion,
only the contribution of the bosons is retained explicitly, with the occupation
number, n+(p) for the bosons replaced by the sum n̄(p) = n+(p) + n−(p) of
the occupation numbers for bosons and anti-bosons.

The form (10.3.4) gives

Πµν
(0)(k) = −q

2

2

∫
d3p

(2π)3

[
n̄(p)
ε

(2p̃µ − kµ) (2p̃ν − kν) + (2p̃k − k2)gµν

2p̃k − k2

− n̄(p − k)
ε′

(2p̃′µ + kµ) (2p̃′ν + kν) − (2p̃′k + k2)gµν

2p̃′k + k2

]
, (10.3.6)

with p̃µ = (ε,p), p̃′µ = (ε′,p − k), ε′ = [m2 + (p − k)2]1/2. The alternative
form (10.3.5) gives

Πµν
(0)(k) = −q

2

2

∫
d3p

(2π)3
n̄(p)
ε

[
(2p̃µ − kµ) (2p̃ν − kν) + (2p̃k − k2)gµν

2p̃k − k2

− (2p̃µ + kµ) (2p̃ν + kν) − (2p̃k + k2)gµν

2p̃k + k2

]
. (10.3.7)

The forms (10.3.6) and (10.3.7) may be further rewritten using (p̃ − k)2 −
m2 = −2p̃k + k2 = (ω − ε − ε′)(ω − ε + ε′), (p̃′ + k)2 − m2 = 2p̃′k + k2 =
(ω+ε+ε′)(ω−ε+ε′), and (p̃+k)2−m2 = 2p̃k+k2 = (ω+ε+ε′′)(ω+ε−ε′′),
with ε′′ = [m2 + (p + k)2]1/2.
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10.3.2 Spin 1 plasmas

The generalization to a plasma of bosons and anti-bosons of spin 1 is as follows.
The averaged propagator for the spin 1 is

Ḡµν(P ) = −
(
gµν − P

µ P ν

m2

) [
1

P 2 −m2 + i0
− iN(P )

m

]
. (10.3.8)

The linear response tensor is obtained from the amplitudes of the bubble and
seagull diagrams, which combine to give

Πµν
(1)(k) =

q2

m

∫
d4P

(2π)4
d4P ′

(2π)4
(2π)4δ4(P ′ − P + k)

×
{[

N(P ′)
P 2 −m2

+
N(P )
P ′2 −m2

]
Fµν

(1)(P, P
′) −N(P )

[
4gµν + 2

Pµ P ν

m2

]}
,

Fµν
(1)(P,Q)=

1
m2

[
2PQ(PµQν +P νQµ)−Q2PµP ν−P 2QµQν−2(PQ)2gµν

]
+gµν(P 2+Q2)+2(Pµ+Qµ)(P ν +Qν)+PµQν +P νQµ. (10.3.9)

An alternative expression in place of (10.3.9) is

Πµν
(1)(k) =

q2

m

∫
d4P

(2π)4
N(P )

[
Fµν

(1)(P, P
′)

P ′2 −m2
+
Fµν

(1)(P, P
′′)

P ′′2−m2
−4gµν−2

PµP ν

m2

]
,

(10.3.10)
with P ′′ = P + k. In taking the nonquantum limit one identifies the number
density as n = 3

∫
(d4P/(2π)4)N(P ), where the factor 3 arises from the three

spin states.

10.3.3 Comparison of responses for spins 0, 1
2
, 1

It is of interest to compare the response of an unpolarized electron gas and the
response for spin 0 and unpolarized spin 1

2 and spin 1 particles. Note that for
unpolarized particles of spin S, the proper number density and the number
density in the rest frame are given by

ñp0 = (2S + 1)
∫

d3p

(2π)3
m

ε
ñ(ε), ñ = (2S + 1)

∫
d3p

(2π)3
ñ(ε), (10.3.11)

respectively, where the tilde denotes the sum over both particles and anti-
particles.

The response tensor for particles of different spin can be written in a
generic form that takes account of the requirements that it reproduce the
nonquantum limit, that it have a denominator (pk)2 − (k2/2)2 and that it
satisfy the charge-continuity and gauge-invariance relations. An appropriate
form is



10.3 Response tensor for bosonic plasmas 425

Πµν(k) = −(2S + 1)e2
∫

d3p

(2π)3
ñ(ε)
ε

Nµν(k, p)
(pk)2 − (k2/2)2

, (10.3.12)

with the numerator a sum of terms involving the tensors aµν(k, p) and gµν −
kµkν/k2. The numerator must reduce to (pk)2 aµν(k, p) in the nonquantum
limit, and hence must be of the form

Nµν(k, p) = (pk)2 aµν(k, p)
(

1 +∆1
k2

m2

)
+ k4

(
gµν − k

µkν

k2

)
∆2, (10.3.13)

where the terms involving ∆1,2 are quantum corrections (of order h̄2) that
depend on the spin S. The explicit forms for spins 0, 1

2 and 1 are

∆1 =

⎧⎨
⎩

0 for spin 0,
0 for spin 1

2 ,
−1/6 for spin 1,

∆2 =

⎧⎨
⎩

−1/4 for spin 0,
0 for spin 1

2 ,
−1/12 for spin 1.

(10.3.14)

The longitudinal and transverse parts of (10.3.12) follow by replacingNµν(k, p)
by NL,T (k, p) with

NL(k, p) = (pk)2 aL(k, p)
(

1 +∆1
k2

m2

)
+ k2kũ∆2,

NT (k, p) = (pk)2 aT (k, p)
(

1 +∆1
k2

m2

)
+ k4∆2, (10.3.15)

with aL,T (k, p) given by (4.1.15).

10.3.4 Isotropic degenerate Bose gases

A degenerate Bose plasma has a Bose-Einstein condensate, corresponding to
the ground state, which is p = 0. Below the degeneracy temperature for a
thermal Bose gas, the chemical potential is zero, and a finite fraction of all
the bosons collect in the ground state. There are no anti-bosons in a degenerate
Bose gas. The occupation number is n(p) = n+(p) = (n/4π|p|2) (2π)3δ(|p|),
where n is the total number density of bosons.

Before making any assumption concerning degeneracy, the longitudinal
and transverse response functions for an isotropic spin 0 gas are

ΠL
(0)(k) = − q2

|k|2
∫

d3p

(2π)3
n̄(p)
ε

{
|k|2

+
(2p · k − |k|2)2

2ε′

[
ε′ − ε

ω2 − (ε− ε′)2 +
ε′ + ε

ω2 − (ε+ ε′)2

]}
, (10.3.16)

ΠT
(0)(k) = − q2

|k|2
∫

d3p

(2π)3
n̄(p)
ε

{
|k|2

+
|k × p|2
ε′

[
ε′ − ε

ω2 − (ε− ε′)2 +
ε′ + ε

ω2 − (ε+ ε′)2

]}]
, (10.3.17)
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Table 10.1. Values of the invariants in the numerator (10.3.21) for bosons and
fermions.

Spin aL(k) bL(k, u) aT (k) bT (k)

0 0 1 − k2/4m2 1 0

1/2 0 1 0 1

1 0 1 − k2/4m2 1 2(1 − k2/4m2)

respectively. In the completely degenerate limit, these give

ΠL
(0)(ω,k) = −q

2nω2

2mεk

[
εk +m

ω2 − (εk −m)2
+

εk −m
ω2 − (εk +m)2

]
, (10.3.18)

ΠT
(0)(ω,k) = −q

2n

m
, (10.3.19)

respectively, with εk given by (9.1.11). The longitudinal dielectric response
(10.3.18) for a degenerate Bose gas was derived in Refs [3, 4].

The analogous functions for an unpolarized completely degenerate spin 1
gas are

ΠL
(1)(k) = − q

2nω2

6m|k|2

[
12m2 − 12mω + 3ω2

(ω −m)2 − ε2k
+

12m2 + 12mω + 3ω2

(ω +m)2 − ε2k
− 6
]
,

ΠT
(1)(k) = −q

2n

m

[
1 − ω

2 − |k|2
3

(
1

(ω −m)2 − ε2k
+

1
(ω +m)2 − ε2k

)]
.

(10.3.20)

The longitudinal and transverse response functions for plasmas composed
of particles of spin 0, 1

2 and 1 have the generic form

ΠL,T (k) = −e
2ñpr

m
aL,T (k) − e2

∫
d3p

(2π)3
ñ(p)
ε

(kp)2

(kp)2 − (k2/2)2
bL,T (k),

(10.3.21)
with the values of aL,T (k) and bL,T (k) different for spin 0, 1

2 and 1. These
values are listed in Table 10.1.

10.3.5 Dispersion relations in the degenerate limit

The dispersion equation for longitudinal waves in a completely degenerate
spin 0 gas is

ω4 − ω2(2|k|2 + ω2
p + 4m2) + |k|4 + |k|2ω2

p + 4m2ω2
p = 0. (10.3.22)

The two solutions of the quadratic equation for ω2 are

ω2 = 1
2 (4m2 + ω2

p + 2|k|2) ∓ 1
2

[
(4m2 − ω2

p)
2 + 16m2|k|2

]1/2
, (10.3.23)
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Fig. 10.2. Dispersion curves (ω/m versus |k|/m) in a completely degenerate spin 0
Bose gas with ωp = 0.1m. (a) The transverse mode (uppermost) and Langmuir-like
mode (lowermost) modes originating from the same cutoff are shown along with the
light line (central). The region of negative dispersion in the Langmuir-ilke mode is
shown in the inset. (b) The pair mode (uppermost), transverse mode (central) and
Langmuir-like mode (lowermost) on a larger scale.

with ω2
p = q2n/ε0m. These solutions simplify for ω2 < 4m2 and for small |k|

to

ω2 = ω2
p + |k|2 − 4m2|k|2/(4m2 − ω2

p) + · · · ,

ω2 = 4m2 + |k|2 + 4m2|k|2/(4m2 − ω2
p) + · · · . (10.3.24)

The first of these is a conventional Langmuir-like mode in the degenerate gas.
The latter, which exists only above the pair creation threshold, is referred to
as the pair mode branch [4].

The dispersion equation for transverse waves in the completely degenerate
spin 0 gas has the familiar form ω2 = ω2

p + |k|2. However, the dispersion
equation for transverse waves in the completely degenerate spin 1 gas is cubic
in ω2. One of the three solutions may be approximated by ω2 = ω2

p+ |k|2+ · · ·,
and the other two by

ω2 = 2m2 + |k|2 + 2m(m2 + |k|2)1/2 ≈ 4m2 + 2|k|2 + · · · , (10.3.25)

ω2 = 2m2 + |k|2 − 2m(m2 + |k|2)1/2 ≈ |k|4
4m2

+ · · · , (10.3.26)

where the approximations apply for |k|2 � m2. The solution (10.3.25) is a
counterpart for transverse waves of the pair branch of the longitudinal waves.
The solution (10.3.26) is similar in form to the dispersion relation for rotons
in a Bose gas a very low temperatures, and is a “roton-like” mode [5].

The dispersion relations for the modes of a degenerate spin 0 gas are
illustrated for a particular case in Fig. 10.2. An interesting example of the
effect of dispersion associated with PC on the properties of the Langmuir-
like mode is the existence of a region of negative dispersion [3]. This effect is
illustrated in the inset in Fig. 10.2(a).
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Fig. 10.3. (a) The ratio of electric to total energy and (b) the group speed are
plotted for the pair mode for the same parameters as in Fig. 10.2.

10.3.6 Pair and roton-like modes

The two additional wave modes in a degenerate Bose gas compared with
a non-degenerate gas or a degenerate electron gas are the pair modes and
roton-like modes. The way these additional solutions arise may be under-
stood by considering the idealized dispersion equation found by setting the
resonant denominator in a relativistic quantum plasma to zero. This ideal-
ized dispersion equation is (kp)2 − (k2/2)2, and it gives a quadratic equation
ω2 − (ω2 − |k|2)2/4m2 = 0 for ω2. Writing the solutions as ω2 = ω2±, one has

ω2
± = 2m2 + |k|2 ± 2m(m2 + |k|2)1/2 ≈

{
4m2 + 2|k|2,
|k|4/4m2,

(10.3.27)

where the approximation is for |k|2 � m2. The upper solution is just above
the threshold for one-photon pair creation, and is characteristic of a pair mode.
The lower solution is characteristic of a roton-like mode. The actual dispersion
relations for these two modes reduce to the solutions (10.3.27) in the limit of
zero particle density (ωp → 0).

The dispersive properties of wave modes include, in addition to the dis-
persion relation, the polarization vector, the ratio of electric to total energy
and the group velocity. For pair modes and roton-like modes in sufficiently
low density plasmas, the last two quantities can be estimated using the ap-
proximate dispersion relations (10.3.27). The actual dispersion relations need
to be used when the low-density limit is not justified.

The ratio of electric to total energy in a longitudinal or transverse wave is
given by

RL,T (k) =

({
∂

∂ω

[
ωKL,T (k)

]}
KL,T (k)=0

)−1

. (10.3.28)

A simple approximation consistent with the approximate dispersion relations
(10.3.27) is

KL,T (k) = 1 −
ω2

p

ω2 − (ω2 − |k|2)2/4m2
. (10.3.29)
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This approximate form suffices at sufficiently low densities, specifically for

ω2
p � |k|4/4m2. (10.3.30)

For the pair mode in the approximation (10.3.29), (10.3.28) gives

RL(k) ≈ |k|2
8m2

. (10.3.31)

The actual dispersion relation for a spin 0 gas is used to plotRL(k) in Fig. 10.3
for the same parameters as in Fig. 10.2. An implication of (10.3.31) is that for
|k|2 � m2 only a small fraction of the energy is associated with the electric
field, and most of the wave energy is associated with the forced motions of
the particles.

The wave energetics also includes the energy flux, which is proportional
to the energy density times the group velocity. In the case of a completely
degenerate spin 0 plasma, the energy flux in the pair mode is due entirely to
the kinetic energy flux (there is no Poynting flux in a longitudinal wave). The
group velocity, vgM = ∂ωM (k)/∂k, is along k in an isotropic medium. For
the pair mode in the approximation (10.3.27), the group speed is

|vg| ≈ 2k/(4m2 + |k|2)1/2. (10.3.32)

The ratio of the wave momentum to the wave energy is k/ω; the group velocity
is equal to twice this ratio. The full dispersion relation for the pair mode in
a spin 0 gas is used in Fig. 10.3(b) to plot the group speed for the same
parameters as in Fig. 10.2.

10.3.7 Dispersive properties of roton-like modes

The approximate form (10.3.29) also leads to approximate forms for RL(k)
and |vg| for roton-like modes. Provided that the low density approximation
(10.3.30) applies, one finds

RL(k) ≈
2ω2

pm
2

|k|4 , |vg| ≈
|k|
m
. (10.3.33)

An interpretation of (10.3.33), together with the dispersion relation ω =
|k|2/2m, is that a roton-like mode has a dispersion relation of the same form as
that for a nonrelativistic particle (E = |p|2/2m), provided that the condition
ω � ωp is satisfied.
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10.4 Macroscopic mass renormalization

The mass operator in QED is divergent, and the infinite contribution associ-
ated with it is incorporated in a redefined electron mass in the renormalization
procedure. In the presence of a medium, the statistical average leads to addi-
tional contributions to the mass operator that depend on the properties of the
medium. There is an analogy with photons: just as the properties of photons
in a medium are different from those of photons in vacuo, the properties of
electrons (and positrons) in a plasma are different from those in vacuo. The
effects of the additional, medium-dependent terms in the mass operator are
referred to as macroscopic mass renormalization (MMR).

10.4.1 Statistical average of the self energy

The mass operator, M(P ), is a Dirac matrix, and it implies that all com-
ponents of the 4-momentum are modified in a medium compared with the
vacuum. In a vacuum, the 4-momentum, Pµ, is introduced in a plane wave
solution of Dirac’s equation, and Dirac’s equation implies the dispersion rela-
tion P 2 = m2 is degenerate, being the same for electrons and positrons and
being independent of the spin. When the medium is included, the dispersion
relations are solutions of the more general dispersion relation (8.2.24), viz.
det
[
/P −m−M(P ))

]
= 0. In solving (8.2.24) one needs to choose dependent

and independent variables. A natural choice for the independent variable is
the 3-momentum, P , with the energy, E = P 0 chosen as the dependent vari-
able. The medium is usually not symmetric under the interchange of electrons
and positrons, and M(P ) is also not symmetric under this interchange. One
may separate M(P ) into two parts by writing

M(P ) = M+(P ) + M−(P ), M±(P ) = M(P )H(±P 0), (10.4.1)

where H(x) is the step function. The dispersion relations for electrons and
positrons are then different.

Assuming that MMR is a small effect, one retains only terms of first order
in M(P ) in (8.2.24). To zeroth order in M(P ) (8.2.24) gives (P 2 −m2)2 = 0,
and the first order corrections to the solutions of this equation are determined
by

P 2 −m2 = 1
4Tr

[
(/P +m)M(P )

]
, (10.4.2)

where (P 2 −m2)(/P +m) is the matrix of cofactors of /P −m. It is tempting
to interpret the left hand side of (10.4.2) in terms of a change in the effective
mass, m → meff . However, even to first order in M(P ) the solution cannot
be described by a change in the effective mass alone.

10.4.2 MMR in an isotropic medium

The presence of an isotropic medium introduces an additional 4-vector into
the problem: the 4-velocity ũµ of its rest frame. The argument that the mass
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operator in vacuo contains only terms proportional to the unit Dirac matrix
and to /P generalizes for an isotropic medium to M(P ) being a sum of three
terms proportional to the unit Dirac matrix, /P and /̃u. A convenient form for
the mass operator in an isotropic medium is

Mε(P ) = I1εm+ I2ε/P + I3εε|P ũ| /̃u, (10.4.3)

where Iiε, i = 1–3, are invariants that are defined here to be dimensionless and
that are generally different for an electron, ε = +1, and a positron, ε = −1.

In the rest frame of the medium, the dispersion equation (8.2.24) may
be evaluated explicitly. With P 0 = P ũ = εε in the absence of MMR, the
first order change in the dispersion relation is introduced by writing P 0 =
ε(ε+∆Eε). In (8.2.24) one has

/P −m−M(P ) → γ0P 0(1 − I2ε − I3ε) − γ · P (1 − I2ε) −m(1 + I1ε),

and it is convenient to rewrite this as

/P −m−M(P ) → (1 − I2ε)[γ0P 0(1 − I3ε) − γ · P −m(1 + I1ε + I2ε)],

when P is identified as the independent variable. One finds

2ε∆Eε = ε2I3ε +m2(I1ε + I2ε), (10.4.4)

to first order in the small parameters. As already noted, the change due to
MMR cannot be described by a change in effective mass alone: two indepen-
dent parameters (I1ε + I2ε and I3ε) are needed to specify the change. One can
include one of these parameters in an energy scaling factor and the other in
an effective mass by writing the solution corresponding to (10.4.4) in the form

P 0 = ε(ε+∆Eε) = ε
(
m2

effε + |P |2
1 − Iε

)1/2

, (10.4.5)

with the two new parameters identified as

m2
effε −m2

m2
= I1ε + I2ε, Iε = I3ε, (10.4.6)

to first order.

10.4.3 Three different contributions to MMR

After statistically averaging, the mass operator may be separated into the
four parts:

M(P ) = MV (P ) + MD(P ) + MP (P ) +
∑
M

MM (P ). (10.4.7)
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The first contribution in (10.4.7), MV (P ), is the vacuum contribution, which
is not changed by the averaging. This contribution is divergent, is incorporated
in a renormalized mass and can otherwise be ignored. The other three terms
are different contributions to MMR. The second contribution in (10.4.7),

MD(P ) = −ie2
∫

d4k

(2π)4
γµG(P − k)γν

[
Dµν(k) −Dvac

µν (k)
]
, (10.4.8)

is a correction due to the photon propagator in the plasma being different
from that in vacuo. The change in the effective mass due to MD(P ) has
a classical counterpart, with the simplest example being the change due to
Debye screening, cf. (10.4.15) below. The third contribution in (10.4.7),

MP (P ) =
e2

2m

∫
d4k

(2π)4
γµ(/P − /k +m)γν Dµν(k)N(P − k), (10.4.9)

is from the statistical average over the distribution of particles in the plasma.
This term has a well-known counterpart in the quasi-particle model for elec-
trons in a non-relativistic degenerate electron gas in solid state physics. The
final contribution in (10.4.7),

MM (P ) = −ie2
∫

d4k

(2π)4
γµ(/P − /k +m)γν

(P − k)2 −m2
DAµν

M (k), (10.4.10)

is from the statistical average over the distributions of waves in a specific mode
M . This term has a classical counterpart associated with the ponderomotive
force per particle. Each of these terms is discussed separately below.

10.4.4 Form of Dµν(k) − Dvac
µν (k) in an isotropic medium

In an isotropic plasma the photon propagator, which appears in the integrands
in (10.4.8)–(10.4.10), separates into longitudinal and transverse parts. This
involves writing

Dµν(k) = DL(k)Lµν(k, ũ) +DT (k)T µν(k, ũ). (10.4.11)

The longitudinal and transverse projection tensors given by (1.6.8) and (1.6.9),
respectively. The longitudinal, DL(k), and transverse, DT (k), parts of the
propagator involve the longitudinal and transverse parts of the response ten-
sor:

DL(k) =
(kũ)4

k4

µ0

(kũ)2 + µ0ΠL(k)
, DT (k) =

µ0

k2 + µ0ΠT (k)
. (10.4.12)

The corresponding contributions from the photon propagator in vacuo,
Dvac

µν (k), which are subtracted from those of the medium in (10.4.8), cor-
respond to setting ΠL(k) → 0, ΠT (k) → 0 in (10.4.12). The longitudinal and
transverse parts of the differenceDµν(k)−Dvac

µν (k) that appears in (10.4.8) are



10.4 Macroscopic mass renormalization 433

DL(k) −DLvac(k) = − (kũ)2µ0Π
L(k)

k4

µ0

(kũ)2 + µ0ΠL(k)
,

DT (k) −DTvac(k) = −µ0Π
T (k)
k2

µ0

k2 + µ0ΠT (k)
. (10.4.13)

10.4.5 Classical MMR

The classical counterpart of the contribution (10.4.8) to MMR is the modifi-
cation of the electromagnetic mass of the electron, due to the medium. In the
simplest case of an electron at rest there is a contribution due to the inertia
attributed to the electron due to its Coulomb field. The electromagnetic mass
is found by integrating the energy density in the Coulomb field over all space
and dividing by c2. In natural units this gives

mem =
∫
d2x 1

2ε0|E|2 =
e2

8πε0

∫ ∞

0

dr

r2
. (10.4.14)

The result diverges for a point electron, due to the contribution from r → 0,
requiring mass renormalization in classical theory. For an electron at rest in
a thermal plasma with Debye length λD, the electric field in the plasma is
screened at distances > λD. On integrating the energy density in the electric
field due to the electron over all space it is clear that the cutoff in the Coulomb
field due to Debye screening implies a smaller total electrical energy for an
electron in a plasma than for an electron in vacuo. The difference between
these electrical energies (divided by c2), implies that the electromagnetic mass
is smaller in the plasma. The change in the electromagnetic mass due to this
effect is

∆mem = − e2

8πε0λD
. (10.4.15)

The result (10.4.15) applies to any particle with charge |e| at rest in an
isotropic thermal plasma.

More generally, for an electron with 4-momentum pµ = muµ in a plasma
the electromagnetic energy may be calculated from the work done by the
electron against the field that it generates. This field is Aµ(k) = Dµν(k)Jν(k)
where Jµ(k) = −eeikx0uµ2πδ(ku) is the current due to the electron, with
x0 = [t0,x0] denoting the initial conditions. Thus the classical expression for
the electromagnetic energy of the electron is identified as

Eem = lim
T→∞

1
2T

∫
d4xAµ(x)Jµ(x) =

e2muµuν

2ε

∫
d4k

(2π)4
Dµν(k) 2πδ(ku).

(10.4.16)
where a factor 1

2 appears for a self-interaction, and where [2πδ(ku)]2 =
(T/γ)2πδ(ku) with γ = ε/m is used. The result (10.4.16) is independent of
the choice of gauge for the photon propagator: a change in gauge involve addi-
tion of a term proportional to kµ or kν to Dµν(k), and such additional terms
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give zero due to the δ-function in (10.4.16) implying ku = 0. For an electron
at rest, the resonance condition ku = 0 implies ω = 0, in which case only
the longitudinal part contributes to the photon propagator in (10.4.16), and
one has DL = µ0|k|2λ2

D/(1 + |k|2λ2
D) for ω → 0. Then (10.4.16) reproduces

(10.4.15).

10.4.6 MMR and the electromagnetic mass

The quantum generalization of the classical result (10.4.16) for the electro-
magnetic energy is determined by the term MD(P ) in the mass operator. The
real part of MD(P ) arises from the imaginary part of G(P − k). The imagi-
nary part of the Feynman propagator follows from (6.5.8), whereas the causal
propagator is appropriate here. This contribution to MMR has the same form
for an electron or a positron, and it suffices to perform the calculation for an
electron. With ∆E+ = ∆E− → ∆E, the result has the form

∆E =
e2

2ε

∫
d4k

(2π)4
Fµν(P, P − k)Dµν(k) 2πδ[(P − k)2 −m2], (10.4.17)

where Fµν(P, P − k) is given by (7.6.24), and where P 2 = m2 and P 0 = ε are
implicit on the right hand side. The covariant form (10.4.17) facilitates proving
that ∆E is independent of the choice of gauge for the photon propagator.
A gauge transformation for Dµν(k) involves adding terms proportional to
kµ or kν . Using the explicit expression (7.6.24) for Fµν(P, P − k), one finds
that kµF

µν(P, P − k) vanishes for P 2 = m2, which is implicit in (10.4.17),
and (P − k)2 = m2, which is implicit in (10.4.17), establishing the gauge
independence of (10.4.17).

The classical limit (10.4.16) is reproduced by (10.4.17) on writing δ[(P −
k)2 −m2] = δ(ku− k2/2m)/2m→ δ(ku)/2m, when the quantum recoil term,
k2/2m, is neglected. The first quantum correction to the classical expression
was derived in Ref. [6].

10.4.7 Quasi-particles in an electron gas

This term MP (P ), given by (10.4.9), describes the change in the 4-momentum
of a particle due to interchanges with other particles in the medium. This mod-
ification of the electron properties is familiar in solid state physics, where the
electrons in a degenerate electron gas are treated as quasi-particles with prop-
erties significantly different from those of free electrons. The quasi-particles
properties are affected by Coulomb interactions with other electrons and by
waves, and together the quasi-particles, like the waves, are regarded as collec-
tive modes of the medium.

In MMR, the interaction of a test electron with the electrons in the medium
may be interpreted in terms of forward scattering of electrons, as illustrated
by the Feynman diagram Fig. 10.4. A physical interpretation is that the test



10.4 Macroscopic mass renormalization 435
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- p - p
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p - k

p - k

Fig. 10.4. Forward-scattering diagrams for a test electron (left) and a test positron
(right) that contribute to the statistical average of the mass operator.

electron, with 4-momentum P = p, emits a virtual photon with 4-momentum
k, which is absorbed by an electron in the medium with initial 4-momentum
p−k, such that the final 4-momentum of the test electron is p−k, and the final
4-momentum of the electron in the medium is p. Thus the roles of test electron
and field electron interchange, leaving the final state identical to the initial
state. Electron-electron scattering in QED is referred to as Møller scattering,
and this exchange interaction corresponds to forward Møller scattering. The
statistical average in this case is over the occupation number of electrons in
the medium. For nonrelativistic electrons, Møller scattering is due primarily
to Coulomb interactions, and forward Møller scattering is the appropriate
generalization of a nonrelativistic theory for quasi-particles based on Coulomb
interactions.

The effect on a test positron in an electron gas is different from that
on a test electron. The scattering of a positron by an electron in QED is
Bhabba scattering, and one of the diagrams for Bhabba scattering is analogous
to Fig. 10.4(a) with one of the electron lines replaced by a positron line.
However, such a diagram cannot be formed by cutting the diagram for the
self energy of the electron. There is no contribution to MMR for a positron
in an electron gas from such a diagram. The relevant Feynman diagram for
a test positron in Fig. 10.4(b) corresponds to the positron with 4-momentum
P = −p annihilating with a field electron with 4-momentum p − k, and the
virtual photon decays into a final pair with the same momenta as the initial
pair. As a consequence, the term MP (P ) is qualitatively different for a test
electrons and a test positron. In a nonrelativistic electron gas, the effect on a
positron can be neglected in comparison with the effect on an electron. With
this neglect, the invariants Iiε in (10.4.3) are nonzero for an electron, Ii+ �= 0,
and zero for a positron, Ii− = 0, so that the dispersion relation is modified
for an electron but not for a positron.

The treatment of MMR due to the term MP (P ) is closely analogous to
that carried out above for the term MD(P ). The resonant part of the electron
propagator contains a term 1− 2nε(εP ), which implies that the contribution
from (unpolarized) electrons in the plasma to the term MP (P ) for an electron
is related to the term MD(P ) by including an additional factor 2n+(P ) in
the integrand. This corresponds to replacing (10.4.17) by
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∆E = − e
2

2ε

∫
d4k

(2π)4
Fµν(P, P − k)Dµν(k)

n+(P − k)
ε′

2πδ[P 0 − ε′ − ω],

(10.4.18)
with ε′ = [m2+(P −k)2]1/2. On inserting (10.4.19) into (10.4.18) and carrying
out the k0 = ω integral over the δ-function, one finds

∆E = − e
2

2ε

∫
d3p′

(2π)3
n+(p′)
ε′

Fµν(P, p′)Dµν(P − p′)
∣∣∣∣
p′0=ε′

, (10.4.19)

where the variable of integration is changed to p′ = P − k, with ε′ = [m2 +
(p′)2]1/2. The gauge independence of (10.4.19) is established by the same
argument as used in establishing the gauge independence of (10.4.17).

The integral over d3p′ in (10.4.19) is equivalent to an integral over solid
angle and an integral over d|p′| |p′|2. It is straightforward to carry out the
integral over solid angle provided that one assumes that the distribution of
electrons is isotropic and that the photon propagator has the vacuum form
Dµν(k) = (µ0/k

2)gµν . (Choosing Dµν(k) = (µ0/k
2)(gµν − kµkν/k2) leads to

the same result.) For an electron, P 0 > 0, in an electron gas with no positrons,
one is to set P 0 = ε to first order in the perturbation expansion, and one finds

∆E = −
µ0e

2n+
pr

4εm
+
µ0e

2m2

8π2ε|P |

×
∫ ∞

0

d|p′| |p′|
ε′

n+(p′) ln
∣∣∣∣ (ε− ε′)2 − (|P | + |p′|)2
(ε− ε′)2 − (|P | − |p′|)2

∣∣∣∣ , (10.4.20)

where n+
pr = 2

∫
[d3p/(2π)3](m/ε)n+(p) is the proper number density.

For a completely degenerate distribution of electrons one has n+(p′) = 1
for |p′| < pF and n+(p′) = 0 for |p′| > pF, where pF is the Fermi momentum.
There are no positrons in the completely degenerate limit. When there are
positrons present in the medium, there is an additional term in the integrand
of (10.4.20), involving n−(p′), due to the effect on a test electron of forward
Bhabba scattering due to the diagram Fig. 10.4(b). For a test positron in an
electron gas with n−(p′) = 0, the only contribution is from forward Bhabba
scattering. For nonrelativistic particles forward Bhabba scattering is negligible
in comparison with forward Møller scattering, due to (P 0−ε′)2 → (P 0+ε′)2 ≈
4m2 implying that the argument of the logarithm in (10.4.20) is very close to
unity.

An unsatisfactory feature of the foregoing calculation is that the simpli-
fying assumption that the photon propagator may be identified as the prop-
agator in vacuo is not internally consistent. The photon propagator should
be identified as that for the electron gas with occupation number n+(p). The
relevant expression is available in the completely degenerate case: one inserts
the expressions for ΠL(k), ΠT (k) for the assumed distribution of degenerate
electrons (§9.3) into (10.4.12) to find the relevant form for the photon prop-
agator. The generalization of the calculation of the parameters (10.4.20) is
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possible only after making some simplifying assumptions. The self-consistent
calculation has yet to be explored in detail.

It is concluded that MMR provides a natural way to derive quasi-particle
properties including relativistic quantum effects. However, the available cal-
culations are not internally consistent in that the effect of the medium on the
photon propagator is ignored.

Application of MMR to highly relativistic plasmas originated in the con-
text of quark-gluon plasmas [7, 8]. The foregoing theory includes relativistic
effects, and its application to relativistic plasmas involves no intrinsically new
ingredients provided that the corrections due to MMR are small. However, in
a sufficiently dense plasma this proviso may not be satisfied.

A characteristic feature of a a quark-gluon plasma is that the effective mass
of the quarks is determined by collective effects. The analogous situation in an
extremely hot, dense electron gas is that meff is much larger than the mass,
m, of a free electron. As a result, the theory is usually developed starting from
the assumption that the electrons are massless, m → 0. A notable feature of
the theory is that the dispersion relation for electrons (and positrons) includes
not only quasi-particle-type solutions that play the role of modified electrons
(and positrons) but also intrinsically new solutions. For example, Braaten [9]
referred to an additional solution as the plasmino, and an analogy was noted
in Ref. [10] between the additional branch with anomalous dispersion and
with the ‘plasmaron’ identified in earlier solid-state literature.

The gauge-invariance of the theory has also been recognized as a problem
in the more general case. The gauge-invariance is established above provided
that MMR can be treated as a perturbation. When this approximation is
not valid, gauge-invariance has been established only to leading order in an
expansion in the inverse temperature, 1/T , for T � m [11, 12].

10.4.8 Mass correction in the presence of waves

The contribution to the mass operator due to the presence of waves in the
mode M in the medium is given by the term MM (P ), cf. (10.4.10). This
contribution corresponds to cutting the closed photon line in Fig. 8.3. It has
a classical counterpart related to the forced motion of a particle due to the
presence of waves in the mode M .

The term MM (P ) affects the dispersion relation of an electron and a
positron in the same way, and it suffices to consider the effect on an electron.
For waves in one specific mode, M , the counterpart of (10.4.17) becomes

∆E =
∑
±

µ0e
2

2ε

∫
d3k

(2π)3
RM (k)NM (k)

FM (P, P ± kM )
(P ± kM )2 −m2

,

FM (P, P − kM ) = Fµν(P, P − kM )e∗µ
M (k)eνM (k). (10.4.21)
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The result (10.4.21) is independent of the choice of gauge: on adding a term
proportional to kµ

M to eµM (k), the additional contributions to the ± terms
cancel.

The change in the energy of a particle in a plasma due to the presence of
waves has a classical counterpart described in the plasma physics literature
as the “sloshing about” of background particles in the waves. The energy of
the particles is perturbed by the fields in the waves, and some of this energy
is ascribed to the wave and some to the background particles. A Hamilto-
nian description of waves in any medium, which is required so that one may
attribute a 4-momentum kµ to a wave quantum, implies that the energy-
momentum 4-tensor for the waves corresponds to the Minkowski form, which
is asymmetric. As discussed in §3.6.6, the energy momentum tensor for the
sum of the electromagnetic field and the particles must be symmetric, and
if the energy momentum 4-tensor ascribed to the waves is asymmetric, there
must be a compensating asymmetric contribution to energy momentum 4-
tensor for the background. The correction (10.4.21) corresponds the change
in the energy of an individual electron in the background medium due to this
effect in the rest frame of the medium.

10.4.9 Ponderomotive force

The additional contribution (10.4.21) to the energy of a particle in the medium
is integrated over the distribution of particles to find the correction to the en-
ergy density of the particles due to the presence of the waves. The foregoing
argument implies that this energy density can be identified with the modifi-
cation of the energy-momentum tensor of the background medium due to the
presence of the waves

On summing (10.4.21) over all the electrons (and positrons) in the medium,
the result can be re-expressed in terms of the response tensor for the medium.
Let the resulting energy density be UM . One finds

UM = µ0

∫
d3k

(2π)3
RM (k)NM (k)

ωM (k)
e∗Mµ(k)eMν(k)Πµν(kM ). (10.4.22)

The wave equation for waves in the mode M implies e∗MµeMνΠ
µν(kM ) =

ω2
M − |k × eM |2, and (10.4.22) gives

UM =
∫

d3k

(2π)3
RM (k)NM (k)

ωM (k)
[
ω2

M (k) − |k × eM (k)|2
]
. (10.4.23)

The potential UM reduces to that for ponderomotive force due to the waves,
cf. §3.2.7.
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10.5 Properties of neutrinos in a plasma

The properties of neutrinos in a plasma are different from their properties in
vacuo as a consequence of weak interactions involving the plasma electrons
(and positrons). There are three flavors of neutrinos, e-neutrino (νe), mu-
neutrino (νµ) and tau-neutrino (ντ ), plus their antineutrinos (ν̄e, ν̄µ, ν̄τ ). The
effect of an electron gas on νe is different from its effect on the other neu-
trinos and antineutrinos. In particular, the counterpart of macroscopic mass
renormalization (MMR) for an electron leads to a nonzero effective mass for
a neutrino that can be important in neutrino mixing.

10.5.1 Weak interactions and the electroweak theory

An early theory for the weak interactions was formulated by Fermi in the 1930s
in terms of a current-current interaction, where the ‘current’ for fermions is
analogous to the (electric) current (6.3.21) for electrons, with the charge of
the particle omitted. Thus the current for two fermion states corresponds
to the quantity jµ(x) = ψq′(x)γµψq(x), where q, q′ may describe different
fermions. In the original form of Fermi’s theory the aim was to describe the
decay of a neutron (n) into a proton (p), an electron (e) and an antineutrino
ν̄; the interaction Lagrangian chosen is a scalar invariant formed from the
wavefunctions for hadrons, n, p, and the leptons, e, ν. The Lagrangian is of
the form −CV ψp(x)γ

µψn(x)ψe(x)γµψν(x), where CV is a coupling constant.
It is now recognized that there are three flavors of lepton and their associated
neutrino: electron, e, νe, muon µ, νµ and tau τ, ντ , and the total lepton current
is the sum over the three flavors. An important modification to Fermi’s theory
was made to account for parity non-conservation in weak interactions, and this
led to the ‘V-A theory’, in which the total current consists of a vector (V)
part, jµ(x), and an axial (A) vector part that is similar in form but involves
an extra factor γ5. In the V-A theory there are equal mixtures of the V and
A terms. A subsequent development was the intermediate vector boson (IVB)
theory, in which currents do not act directly on each other, but are coupled
to the IVB called the spin 1 ‘W-boson’. The coupling term is proportional
to j†µ(x)Wµ(x) + jµ(x)W †µ(x), where Wµ(x) is the wavefunction of the W-
boson.There are neutral-current weak interactions, and these require a neutral
intermediate vector boson, in addition to the W±. This particle is called the
Z0. The coupling between the Z0 and any of the leptons is closely analogous
to that between a photon and an electron in QED.

The electroweak theory of the Glashow-Salam-Weinberg (GSW) is the
basis for the modern-day theory of the weak interactions, and is regarded as
part of the ‘standard model’. The electroweak theory is a gauge field theory
with a group structure of SU(2) × U(1), describing the combination of the
triplet state of the IVB, consisting of W±, Z0, and the singlet state of a
photon. As with all gauge theories, the particles are massless, and symmetry-
breaking is required to give them mass. The symmetry breaking mechanism
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must leave the photon massless and give the W± and Z0 nonzero masses.
The various parameters in the electroweak theory, depend on the Weinberg
angle, θW . In particular, let GF /

√
2 be the coupling constant in V-A theory,√

αf be the coupling constant in QED, g, g′ be the coupling constant to the
SU(2), U(1) terms in the electroweak theory, and mW ,mZ be the masses of
the IVBs. The relations between the coupling constants are

GF√
2

=
g2

8m2
W

, g sin θW = g′ cos θW =
√
αf , (10.5.1)

and the masses are related by

mW = mZ cos θW . (10.5.2)

The coupling constants g, g′ are dimensionless, so that GF has the dimensions
of an inverse mass squared. Its numerical value is GFm

2
p ≈ 10−5, where mp is

the mass of the proton.
Note that gaussian units are used widely in particle physics, and in nat-

ural units the fine structure constant, αf is equal to e2 for h̄ = c = 1; the
coupling constants g, g′ are usually defined in terms of e in gaussian units; in
SI units one needs to replace e by the dimensionless √

αf in such relations.
Alternatively, in SI units with h̄ = c = 1, one has √

αf = e/(4πε0)1/2, and a
factor (4πε0)1/2 appears when relating g, g′ to e.

10.5.2 Interaction terms in the electroweak theory

The electroweak theory gives explicit forms for the coupling between leptons
and the W± and Z0 bosons. The coupling between leptons and the Z0 is the
same for all leptons. The interation Lagrangian is

LZ
I (x) = −

∑
f

g

2 cos θW

[
ψνf

(x)γµLψνf
(x)

+ψf (x)γµ(gV + gAγ5)ψf (x)
]
Zµ(x), (10.5.3)

with L = 1
2 (1 + γ5), and where the sum is over all three flavors of leptons,

f = e, µ, τ and with

gV = 2 sin2 θW − 1
2 , gA = − 1

2 . (10.5.4)

In the first term in (10.5.3) the identity RγµL = γµL is used, with R =
1
2 (1 − γ5). The analogous term for the coupling to the W± is

LW
I (x) = −

∑
f

g√
2

[
ψνf

(x)γµLψf(x)W+
µ (x) + ψf (x)Rγµψνf

(x)W−
µ (x)

]
.

(10.5.5)
The interaction Lagrangian from the electroweak theory includes the two

terms (10.5.3) and (10.5.5), and these lead to Rule 17 and Rule 18 of §7.1.
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10.5.3 Electron-neutrino scattering

The induced properties of neutrinos in an electron gas may be inferred
from the appropriate forward-scattering amplitude. Before considering the
forward-scattering amplitude specifically, consider the more general problem
of electron-neutrino scattering.

The two processes indicated in Fig. 10.5 contribute to electron-neutrino
scattering; these involve exchange of a Z0 boson between an electron line and
a neutrino line, and exchange of a W boson between two electron-neutrino
vertices. The first of these processes contributes in the same way to all flavors
of neutrinos, νe, νµ, ντ , and the latter applies only to νe.

Let the initial and final 4-momenta be p, p′ the electron and q, q′ for the
neutrino, so that the momentum transfer is p − p′ = q′ − q. The Feynman
amplitude for the two processes follow from Rules 17 and 18. For the process
involving the exchange of the Z0 the amplitude is

iMfi =
(−ig)2

4 cos2 θW
ūs′(p′γµ(gV + gAγ5)us(p) ν̄(q′)γµLν(q)

(p− p′)2 −m2
Z

. (10.5.6)

In (10.5.6) and below, the amplitudes are written as us(p), ūs′(p′) for electrons
and positrons, with the corresponding amplitudes for neutrinos written ν(q),
ν̄(q). For the exchange of aW -boson the momentum transfer is p−q′ = p′−q

iMfi = − (−ig)2
2

ν̄(q′)(p′γµLus(p) ūs′(p′)γµLν(q)
(p− q′)2 −m2

W

. (10.5.7)

10.5.4 Fierz transformation

In the expression (10.5.7) describing the effects of the exchange of aW -boson,
there is a product of two matrix elements between electron and neutrino states,
whereas in the expression (10.5.6), describing the effects of the exchange of
a Z0-boson, there is a product of two matrix elements, one between electron
states and the other between neutrino states. In combining the two, one needs
to rewrite (10.5.7) so that it involves a sum of terms of the same form as
(10.5.6). This is achieved through a Fierz transformation.

Consider the 16 basis matrices, γA = 1, γµ, iσµν , iγµγ5, γ5, defined by
(6.1.29) and satisfying (6.1.30), specifically, γAγA = 1, γAγB = δAB. These
may be used to write and product of matrix elements of two Dirac matrices
between two different states as a combination matrix elements between the
same states. Specifically, let A and B be any two combinations of Dirac matri-
ces, and consider the product ψAψ′ ψ

′
Bψ, where ψ and ψ′ are two arbitrary

states. This outer product can be expresses as a sum of terms of the form
ψΓAψ ψ

′
ΓBψ

′, where the ΓA, ΓB, A,B = 1–16 denote the basis matrices. It
is helpful to introduce matrix indices: let the four components of ψ be de-
noted ψa, with a = 1–4, and the corresponding components of ψ be denoted
ψc, with c = 1–4. One has
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ψAψ′ ψ
′
Bψ = ψcψ

′
dψ

aψ′b Ac
bB

d
a.

The raised indices label the rows of the matrices A, B, and the lowered indices
label the columns.

It suffices to consider the case where A, B are the unit matrices. The
outer product of the unit matrix with itself may be re-expressed as a sum of
16 terms that are diagonal in the basis vectors:

δbc δ
a

d =
1
4

∑
A

(γA)a
c (γA)b()d. (10.5.8)

On multiplying both sides by Ag
bB

f
a, and then writing f → a, g → b, one

finds

Ab
cB

a
d =

1
4
[
Aa

cB
b
d + (Aγµ)a

c (Bγν)b
d − (Aσµν)a

c (Bσµν)b
d

−(Aγµγ5)a
c (Bγµγ

5)b
d + (Aγ5)a

c (Bγ5)b
d

]
. (10.5.9)

Using a Fierz transformation (10.5.9), the amplitude (10.5.7) may be
rewritten

iMfi =
(−ig)2

2
ūs′(p′)γµLus(p) ν̄(q′)γµLν(q)

(p− q′)2 −m2
W

. (10.5.10)

where the sign difference from (10.5.6) is due to the interchange of fermion
lines in the initial or final states. The total Feynman amplitude is the sum of
(10.5.6) and (10.5.10).

In the case of small momentum transfer, (p − p′)2, (p − q′)2 � m2
Z ,m

2
W ,

the two terms (10.5.6) and (10.5.7) reduce to similar forms, and their sum
reduces to

Mfi =
√

2G ūs′(p′)γµ(g′V + g′Aγ
5)us(p) ν̄(q′)γµLν(q), (10.5.11)

with g′V = 1 + gV, g′A = 1 + gA.

10.5.5 Macroscopic mass renormalization for neutrinos

The self-energy diagrams of a neutrino correspond to the forward-scattering
counterparts of the scattering diagrams shown in Fig. 10.5. Forward scatter-
ing corresponds to the initial and final electrons having the same quantum
numbers, and hence to the two external lines being connected to form a loop,
as illustrated in Fig. 10.6. This involves replacing the initial and final electron
wavefunctions by the electron propagator, integrating over the 4-momentum
in the resulting loop, and omitting the neutrino wavefunctions to find an am-
plitude Σ(q), where q is the 4-momentum of the neutrino. The specific interest
here is in the contribution to the self energy from statistically averaging over
the electron propagator.
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Z W

ee e

eνν ν

ν

a b

Fig. 10.5. The diagrams that contribute to electron-neutrino scattering in a plasma:
(a) exchange of a Z0, or (b) exchange of a W−. In the limit in which the masses of
the Z0 and W± are arbitrarily large, these diagrams are equivalent to (c).

The self energy is described by a Dirac matrix, denoted Σ(q) for a neutrino
with 4-momentum q. Including this in the neutrino propagator, the inverse
propagator becomes

G−1
ν (q) = /q −Σ(q). (10.5.12)

The two diagrams shown in Fig. 10.6 both contribute to Σ(q). The scattering
amplitudes involving exchanges of Z0 and W can be combined in the form
(10.5.11) in the case of sufficiently small momentum transfer. The contribution
from the electron gas to the self energy from exchange of a Z0 is the same
for neutrinos of all flavors. It is only the exchange of a W that causes the
mass of the νe to be different from the other two neutrinos. Only this term is
important in neutrino mixing, and it is the only term considered explicitly in
the following.

Let the contribution to the self energy of the νe from the diagram in
Fig. 10.6 be written Σ(W )(q). In the amplitude, the matrix product along the
neutrino line is ν̄(q)1

2 (1 − γ5)Σ(W )(q)1
2 (1 + γ5)ν(q), where γµL = Rγµ is

used. Then the self-energy term is identified as the part of

Σ(W )(q) = i
g2

2

∫
d4p

(2π)4
γµG(p)γµ

(p− q)2 −m2
W

, (10.5.13)

that satisfies RΣ(W )(q)L = RΣ(W )(q). The electron propagator gives a ma-
trix factor /p +m in the numerator, and one has γµ(/p +m)γµ = −2/p+ 4m,
and the term 4m does not contribute. Here only with contribution from the
electron gas to the statistically averaged electron propagator considered, and
from(8.2.16) this involves the term i(/p+m)N(p)/2m. This part in (10.5.13)
gives

Σ(W )(q) = −
∑

ε=±1

g2
∫

d3p

(2π)3
1
2ε

/p nε(p)
(p− q)2 −m2

W

, (10.5.14)

where the relation (8.3.2) between N(p) and the electron and positron occu-
pation numbers, nε(p), is used
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Fig. 10.6. Neutrino self-energy Feynman diagrams.

10.5.6 Neutrino MMR in an isotropic electron gas

To evaluate (10.5.14) one need to make assumptions about the electron gas.
Assuming an isotropic background plasma there are only two 4-vectors on
which Σ(W )(q) can depend: the 4-momentum, qµ, of the neutrino, and the
4-velocity, ũµ, of the rest frame of the plasma. There is no antisymmetric
4-tensor available. Thus the most general form of Σ in an isotropic plasma is

Σ(q) = a(q)/q + b(q)/̃u, (10.5.15)

where a(q) and b(q) are invariants. These invariants may be determined from
(10.5.14) by

a(q) = 1
4Tr [/qΣ(q)]/q2, b(q) = 1

4Tr [/̃uΣ(q)]. (10.5.16)

Given these invariants, the dispersion relations for neutrinos is determined by
the poles in the neutrino propagator, and these correspond to the solutions of
the dispersion equation found by setting the determinant of (10.5.12) to zero.
This gives

det [/q −Σ(q)] = {[1 − a(q)]q0 − b(q)}2 − [1 − a(q)]2|q|2 = 0, (10.5.17)

which is to be solved for the neutrino energy, q0, as a function of its 3-
momentum, q.

The case of most interest is for neutrinos (and electrons) with energies
� mW . On expanding (10.5.14) in 1/m2

W , to lowest orderΣ(W ) is independent
of q, implying a(q) → 0, b(q) → b. Evaluating the integral in the rest frame of
the plasma corresponds to pũ = p0 = εε. The integral reduces to the difference,
n+ − n−, between the number densities of electrons and positrons in the rest
frame. Thus, one finds

b =
g2

8m2
W

∑
ε=±1

∫
d3p

(2π)3
εnε(p) =

g2

4m2
W

(n+
e − n−e ) =

√
2GF (n+

e − n−e ),

(10.5.18)
where a factor of 2 arises from the sum over the two spin states of the electron,
and where in the final form the relation (10.5.1) is used to introduce the weak
coupling constant, GF . The solutions of (10.5.17) become

q0 = εν±(q), εν±(q) = ±|q| + b. (10.5.19)



10.5 Properties of neutrinos in a plasma 445

The solution εν+(q) = |q|+b describes the neutrino, and the solution εν−(q) =
|q| − b describes the antineutrino. The result (10.5.19) is well known [13, 14].

The contribution of the Z-boson diagram in Fig. 10.6 to the self energy
of the neutrino in a plasma is proportional to the contribution from the W .
The relation between the two is implied by the relation between the two
contributions in (10.5.11) to lowest order in 1/m2

W , 1/m
2
Z:

Σ(Z) = 1
2 (gV + gV)Σ(W ) =

GF√
2

(gV + gV)(n+
e − n−e ) /̃u. (10.5.20)

This contribution applies to neutrinos of all flavors, and does not contribute
to the mass difference required for neutrino mixing.

The interpretation of the dispersion relation (10.5.19), despite its simplic-
ity, requires some care. An important point is that it cannot be written in
terms of an effective mass of the neutrino: an effective mass, meff , would re-
quire a dispersion relation of the form (q0)2 − |q|2 = m2

eff . The dispersion
relation (10.5.19) can be written in terms of an equivalent refractive index for
the neutrino: |q|/ω = 1−b/ω, with ω = q0 the neutrino energy. This has some
similarities to the dispersion relation for a photon in a cold plasma. However,
unlike photons in a plasma, whose group speed is not equal to the speed of
light, a neutrino does propagate at the speed of light in a plasma. Specifi-
cally, (10.5.19) implies that the group speed is equal to the speed of light:
∂qo/∂|q| = 1. Thus the neutrino acts like a massless particle in the sense that
only massless particles propagate at the speed of light. Another interpretation
of (10.5.19) involves the factor b in the dispersion relation being regarded as
an effective potential, Veff [15, 16].
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10.6 Response of a neutrino gas

Neutrinos in an electron gas acquire induced electromagnetic properties that
allow them to act like charged particles in emitting and absorbing photons.
One can define a neutrino-photon vertex, and modify the rules of QPD to
treat neutrino-photon interactions. This also implies that a neutrino gas leads
to a contribution to the linear response tensor. The antihermitian part of this
response tensor for a beam of neutrinos implies an instability in which low-
frequency waves grow, implying a coupling between the neutrino beam and
matter that may play an important role in supernova explosions.

10.6.1 Neutrino-photon vertex function

A neutrino can emit a photon due to the processes illustrated in Fig. 10.7. The
diagrams in Fig. 10.7 differ from those in Fig. 10.6 in that the internal electron
line contains an electron-photon vertex that separates the internal electron line
into two portions. The statistical average over the electrons in these two por-
tions leads to an equivalent neutrino-photon vertex. The 4-current implicit in
this equivalent neutrino-photon vertex implies induced electromagnetic prop-
erties attributed to the neutrino.

In considering the induced properties of a neutrino in an electron gas one is
usually concerned with the limit in which the electron and neutrino energies
are small in comparison with the mass of the IVB. To leading order in an
expansion in 1/m2

W , the two diagrams in Figs. 10.5–10.7 may be combined
into a single expression. However, this expression depends on the neutrino
flavor, and is different for neutrinos and antineutrinos. The diagram with an
intermediate Z0 contributes to all flavors of neutrinos, and the diagram with
an intermediate W contributes only to the νe. It is convenient to write these
together as A + Bγ5, with

A =
{
g′V = 2 sin2 θW + 1

2 for ν = νe,
gV = 2 sin2 θW − 1

2 for ν = νµ, ντ ,

B =
{
g′A = + 1

2 for ν = νe,
gA = − 1

2 for ν = νµ or ντ . (10.6.1)

The combination of the low-energy limit of the two diagrams Fig. 10.7 from
the electroweak theory is equivalent to a diagram for a ννγ vertex due to the
weak interactions. This equivalent diagram is illustrated in Fig. 10.8.

The amplitude for the diagram Fig. 10.8 can be written in a form anal-
ogous to the matrix element for Cerenkov emission by an electron. The con-
ventional coupling between an electron and the electromagnetic field involves
a matrix element between electrons states, −eūs′(p′)γµus(p) say, and Aµ(k),
cf. (7.2.1). The combination of terms involved in emission by a neutrino has
an analogous form, specifically, a matrix element between neutrino states,
−eν̄(p′)Γµ(k)ν(p) say, and Aµ(k). This defines an equivalent vertex function,
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Fig. 10.7. Electroweak vertex diagrams for ννγ process.

Γµ(k) say, for the ννγ process that replaces γµ for the eeγ process. The anal-
ogy with (7.2.1) implies that the matrix element for the ννγ process has the
form

iMfi = ie ν̄(p′)Γµ(k)ν(p)Aµ(k), (10.6.2)

with p′ = p − k. Evaluating the amplitude for the diagram Fig. 10.8 and
writing it in the form (10.6.2) leads to the identification

Γµ(k) = − iGF√
2
γν(1−γ5)

∫
d4p

(2π)4
Tr [γµGe(p+k)γν(A+Bγ5)Ge(p)], (10.6.3)

whereGe(p) denotes the statistically averaged electron propagator. The vertex
function appears only between neutrino wavefunctions, and the only part of
it that contributes satisfies

RΓµ(k)L = Γµ(k). (10.6.4)

The part of the integral in (10.6.3) that involves A is the same as the
integral that appears in the general form (8.2.22) for the response tensor,
Πµν(k), for the electron gas. Noting the form of (8.2.22), (10.6.3) may be
rewritten as

Γµ(k) = − GF√
24πε0αf

γν(1 − γ5)
[
AΠµν(k) + BΠ5

µν(k)
]
, (10.6.5)

where an additional tensor is defined by analogy with (8.2.22):

Π5
µν(k) = −ie2

∫
d4P

(2π)4
Tr [γµGe(P )γνγ5Ge(P − k)]. (10.6.6)

The charge-continuity and gauge-invariance relations for Πµν(k) and Π5
µν(k)

imply that the vertex function satisfies

kµΓµ(k) = 0. (10.6.7)

For unpolarized isotropic electrons, Πµν(k) has only longitudinal and trans-
verse parts and, as shown below, Π5

µν(k) has only a rotatory part.
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Fig. 10.8. Fermi 4-vertex diagram for ννγ process.

10.6.2 Π5
µν(k) for an isotropic electron gas

The tensorial form of the response tensor Π5
µν(k), defined by (10.6.6), is de-

termined by the numerator. Consider the quantity

1
4Tr [γµ(/P+m)γν(1+γ5)(/P−/k+m)] = Fµν(P, P −k)−iεµναβkαPβ , (10.6.8)

where (6.1.27) is used, and with Fµν(P, P −k) defined by (7.2.11). Comparing
Π5

µν(k) with Πµν(k), one finds that Π5
µν(k) is a quantum correction compared

with Πµν(k). Hence the term involving B in (10.6.5) is a quantum correction
compared with the term involving A, and so can be neglected. Nevertheless,
it is of formal interest to consider the form of Π5

µν(k).
The integral in (10.6.6) has a factor Pβ in the numerator, and it can

depend only on available 4-vectors. There are only two available 4-vectors in
the isotropic case, kβ and ũβ, and the component along kβ does not contribute
in (10.6.8). The component along ũβ is found by replacing Pβ by P ũ ũβ. This
is equivalent to making the following replacement in the numerator in (10.6.6):

1
4Tr [γµ(/P + /k +m)γνγ5(/P +m)] → −P ũRµν(k, ũ),

where the definition (1.6.12) of the rotatory part is used. The integral gives

Π5
µν(k) = Π5

R(k)Rµν(k), Π5
R(k) = −e2|k|k2

∫
d3p

(2π)3
n+(p) − n−(p)
(pk)2 − k4/4

,

(10.6.9)
with pk = εω − k · p. The electrons and positrons contribute with opposite
signs to Πµν(k), in contrast with Πµν(k) to which they contribute with the
same sign.

To lowest order in k/P , the neutrino-photon vertex function (10.6.5) for
an isotropic electron gas reduces to

Γµ(k) = −
√

2GF

4πε0αf
A [ΠL(k)Lµν(k, ũ) +ΠT (k)T µν(k, ũ)]γνL, (10.6.10)

with A given by (10.6.1). The identity γνL = RγνL implies that Γµ(k) satisfies
the projection condition (10.6.4).
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The vertex function (10.6.10) involves A, which depends on the neutrino
flavor. Experimentally, sin2 θW in is close to 1

4 and for this value, (10.6.1)
implies A = 1 for νe and A = 0 for νµ, ντ . Hence, although the induced
electromagnetic properties of muon and tau neutrinos in an electron gas are
not zero, they are much smaller than the induced electromagnetic properties
of the electron neutrino [17].

10.6.3 Induced charge on the neutrino

The induced electromagnetic properties of a neutrino in an isotropic electron
gas may be inferred from (10.6.10). The electromagnetic properties, such as
the induced charge, current and magnetic moments, are functions of kµ. One
can estimate the typical induced charge for ω � |k| on the neutrino by noting
that the longitudinal response of the electron gas gives the dominant effect.
In this case the ratio of the induce charge on the neutrino to the charge
on the electron follows from the ratio of Γ 0(k) to γ0. In the rest frame of a
nonrelativistic thermal plasma one has L00(k, ũ)ΠL(k) = ε0/λ2

D, where (1.7.9)
and (1.6.7) are used, and where ω � |k|Ve is assumed. Then (10.6.10) implies
an effective charge, eeff, given by

eeff
e

= −
√

2GFA
4παfλ2

D

. (10.6.11)

The result (10.6.11), apart from notational differences, was derived in Ref.
[18]. The magnitude of the induced charge ratio (10.6.11) is extremely small,
eeff/e ≈ −3 × 10−28(λD/1 m)−2.

10.6.4 Cerenkov emission by a neutrino

Cerenkov emission by a neutrino is described by Fig. 10.8. The corresponding
Feynman amplitude is given by (10.6.2) with (10.6.10). The form (10.6.10)
applies only to an isotropic plasma, and the only waves that can satisfy the
Cerenkov condition in such a plasma are longitudinal waves, notably Langmuir
waves. Hence, only the term involvingΠL(k) contributes in (10.6.10). Further-
more, the dispersion relation for longitudinal waves implies ΠL(k)/ε0 = −ω2

L,
so that (10.6.2) with (10.6.10) simplifies to

iMfi = i
√

2GF

4παf
Aω2

Lν̄(p
′)RLµ(k, ũ)γµ Lν(p), (10.6.12)

where (1.6.8) is used to write Lµν(kũ) = Lµ(kũ)Lν(kũ), with Lµ(kũ) =
[|k|/ω,k/|k|] in the rest frame of the plasma.

The probability for Cerenkov emission of a Langmuir wave by a neu-
trino follows by analogy with the probability (7.2.8) for Cerenkov emission
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by an electron. The general form simplifies considerably when the quan-
tum recoil and other quantum corrections are neglected, in which case
|ν̄(p′)RLµ(k, ũ)γµ Lν(p)|2 reduces to

|Lµ(k, ũ) pµ|2/2 = ε2(ω2 − |k|2)2/2ω2|k|2,

where the argument of the δ-function is approximated by εω − k · p = 0. The
probability simplifies to

wL(p, k) =
e2

ε0

G2
FA2ω4

p

16π2α2
f

(ω2
p − |k|2)2

ω2
p|k|2

2π δ(ωp − k · v), (10.6.13)

where v is the velocity of the neutrino, with |v| = 1, and where the fre-
quency of the Langmuir waves is approximated by ωp. It is interesting that
the probability (10.6.13) is independent of the energy of the neutrino.

The probability (10.6.13) is very much smaller than that for an electron
due primarily to the factor involving G2

F ; this factor is of order 10−6 times,
in ordinary units, (h̄ωp/mp)4, which is an extremely small number except in
extremely dense plasmas.

10.6.5 Response of a neutrino gas

The existence of the neutrino-photon vertex, Γµ(k), implies a bubble diagram
for photons in which the intermediate lines correspond to the neutrino propa-
gator. Just as the statistical average over the bubble diagram for intermediate
electron states leads to the response tensor for an electron gas, the statisti-
cal average of this diagram over the neutrino distribution gives the response
tensor for a neutrino gas.

The contribution of neutrinos to the response tensor follows by replac-
ing the electron-photon vertices and electron propagators by neutrino-photon
vertices and neutrino propagators. This gives

Πµν
neu(k) = −ie2

∫
d4P

(2π)4
Tr [Γµ(k)Gν(P )LΓ ν(k)Gν(P − k)L], (10.6.14)

with the vertex function given by (10.6.5). The neutrino propagator, statis-
tically averaged over the distribution of neutrinos (and antineutrinos) has a
nonresonant part that is independent of the averaging and a resonant part
that depends on the occupation numbers n+

ν (P ), n−ν (P ) of neutrinos and an-
tineutrinos, respectively. On including the effect of the electron gas on the
dispersion relation for the neutrinos, one has

Gν(P ) = /P

{
℘ 1
P 2

+
∑

ε

iπ
δ[P 0 − εεε(P )]

εε(P )
nε

ν(P )

}
. (10.6.15)
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with εε(P ) given by (10.5.19). On inserting (10.6.15) into (10.6.14), and eval-
uating the trace, using (10.6.8), the resulting expression is unnecessarily cum-
bersome for most purposes, and it is appropriate to make simplifying assump-
tions. On neglecting the effect of the electron gas on the neutrinos, neglect-
ing the antineutrinos, and retaining only the leading term in an expansion
in k/P , the response tensor (10.6.14) reduces to an expression proportional
to the response tensor for an electron gas in the limit k � P . Specifically,
the result is proportional to the expressions (8.3.1)–(8.3.8), written down in
§8.3, with Fµν(P, P ′) → 2PµP ν and other quantum corrections ignored. The
expression for an electron gas involve an explicit factor 1/m that cancels
with a factor m in N(P ), defined by (8.3.2), so that the limit m → 0 for
neutrinos is straightforward. A convenient form is one analogous to (8.3.7)
that involves the resonant denominator kP that becomes the classical res-
onant denominator to lowest order in k/P , and a numerator that involves
N(P + 1

2k) −N(P − 1
2k) → kα∂N(P )/∂Pα in this limit.

With these simplifying assumptions, (10.6.16) reduces to

Πµν
neu(k) = −e2G

2
FA2ω4

8π2α2
f

(ω2 − |k|2)2
ω2|k|2

∫
d3p

(2π)3ε2
pµpν

ω − k · v k · ∂nν(p)
∂p

,

(10.6.16)
The antihermitian part of (10.6.16) follows by applying the Landau prescrip-
tion to the resonant denominator, giving

ΠAµν
neu (k) = iπe2

G2
FA2ω4

8π2α2
f

(ω2 − |k|2)2
ω2|k|2

∫
d3p

(2π)3
pµpν

ε2
δ(ω − k · v)k · ∂nν(p)

∂p
.

(10.6.17)

10.6.6 Instability due to a neutrino beam

An intense beam of neutrinos is created during a supernova explosion, and
coupling between this flux of neutrinos and infalling matter is thought to be an
essential ingredient in the explosion. The initial step is the loss of central pres-
sure (due to several possible different causes) resulting in an implosion which
can be stopped only when the matter becomes dense enough for protons and
electrons to form neutrons and neutrinos. This occurs when the Fermi energy
of the electrons reaches the mass difference between the neutron and the pro-
ton. Most of the protons are converted into neutrons, producing an intense flux
of escaping neutrinos. To convert the implosion into an explosion, as observed
in a supernova, momentum must be transferred to the infalling matter to re-
verse its motion. The only plausible mechanisms for this transfer involves the
neutrinos. The instability in which the flux of neutrinos generates Langmuir
waves in the infalling matter provides a possible momentum-transfer mecha-
nism: the Langmuir waves scatter the neutrinos, reducing the momentum in
the neutrino beam, transferring it to the ambient plasma.

As with most other instabilities, the neutrino-beam driven instability can
be either kinetic or reactive [19, 20]. The kinetic version of the instability may
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be treated using the probability (10.6.13) to evaluate the absorption coefficient
(5.2.5), which becomes

γL(k) = −
∫

d3p

(2π)3
wL(k, p)k · ∂nν(p)

∂p
, (10.6.18)

for neutrinos. The same result is derived from the antihermitian part (10.6.17)
using the expression (2.4.14) for the absorption coefficient applied to longi-
tudinal waves. Consider a highly collimated beam of neutrinos, confined to
a cone with half-angle α0 � 1 say. One finds that growth occurs near its
maximum rate in a small range of angles θ∼<α0 for the Langmuir waves, and
over a range ∆|k|∼<ωpα

2
0. This corresponds to a very narrow frequency range,

specifically, to ∆ω∼<3ωpα
2
0(V

2
e /c

2) in ordinary units. The growth rate for the
kinetic instability is severely restricted by the requirement that it not exceed
this very narrow bandwidth of the growing waves.

The reactive version of the instability follows by evaluating the response
tensor (10.6.17) for specific models for the neutrino beam. Some simple models
were evaluated in detail in Ref. [21]. The analysis of the reactive instability
closely parallels that for a reactive instability due to a cold electron beam [22].
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A

Units and physical quantities

A.1 Physical and plasma constants

The values of physical and plasma constants are given in Table A.1 in SI units
and gaussian units. For the plasma constants, the values in SI units are for
ne is per cubic meter, and the values in gaussian units are for ne is per cubic
centimeter, and for temperature in kelvin.

Table A.1. Physical and plasma constants

physical quantity SI units gaussian units

speed of light c 3.0 × 108 m s−1 3.0 × 1010 cm s−1

fundamental charge e 1.6 × 10−19 C 4.8 × 10−10 esu
electron mass me 9.1 × 10−31 kg 9.1 × 10−28 g
proton mass mp 1.67 × 10−27 kg 1.67 × 10−24 g
electron volt eV 1.6 × 10−19 J 1.6 × 10−12 erg
(Planck’s constant)/2π h̄ 1.05 × 10−34 J s 1.05 × 10−27 erg s
classical e− radius r0 2.8 × 10−15 m 2.8 × 10−13 cm
Thomson cross section σT 6.65 × 10−29 m2 6.65 × 10−25 cm2

critical B field Bc 1.44 × 109 T 1.44 × 1013 G
ε0 8.85 × 10−12 F m−1

µ0 1.23 × 10−6 Hm−1

plasma frequency ωp 56.4n
1/2
e s−1 5.64 × 104n

1/2
e s−1

electron gyrofrequency Ωe 1.76 × 1011B s−1 1.76 × 107B s−1

Debye length λD 69T
1/2
e n

−1/2
e m 6.9T

1/2
e n

−1/2
e cm

ion sound speed vs 91T
1/2
e m s−1 9.1 × 103 cm s−1

D.B. Melrose: Units and physical quantities, Lect. Notes Phys. 735, 453–456 (2008)

DOI: 10.1007/978-0-387-73902-1 c© Springer-Verlag New York 2008
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Conversions factors

Conversion factors between quantities in SI and gaussian units are given in
Table A.2.

Table A.2. Conversion factors between SI and gaussian units

quantity gaussian/SI

length 102 cm/m
mass 103 g/kg
energy 107 erg/J
power 107 erg s−1/W
force 105 dyne/N
charge 3 × 109 statcoul/C
electric field 1

3 × 10−4 statvolt cm−1/V m−1

current 3 × 109 statamp/A
current density 3 × 105 statamp cm−2/A m−2

magnetic induction 104 G/T

Boltzmann’s constant is not used in this book. One should regard the
kelvin as a unit of energy, and then Boltzmann’s constant is a conversion
factor from kelvin to other energy units. This and other conversion factors are
given in Table A.3.

Table A.3. Other conversion factors

quantity factor inverse

temperature 1.38 × 10−23 J/K 7.24 × 1022 K/J
temperature 8.62 × 10−5 eV/K 1.16 × 104 K/eV
X-ray energy 4.1 × 10−15 eV/Hz 2.4 × 1014 Hz/eV

A.2 Units and dimensional analysis

Natural, SI and gaussian units

In most of the formal development in this book, the formulae are written
in natural units, in which one has h̄ = c = 1. The use of natural units is
widespread in relativistic quantum mechanics, but it is unusual in classical
electrodynamics and plasma physics. To minimize confusion, selected formulae
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have h̄ and c restored. Such formulae are preceded by a remark to this effect
or are said to be in ‘ordinary units’ or ‘SI units’.

The choice of natural units in a covariant classical overcomes some annoy-
ing problems with the appearance or non-appearance of c. One example is in
Fourier transforming in both space and time. By convention one integrates
over dt and d3x, and the inverse transform involves integrals over dω and
d3k. On writing these in covariant forms these are replaced by d4x and d4k,
which involve integrals over dx0 = cdt and dk0 = dω/c. These two different
conventions lead to Fourier transformed functions with dimensions that differ
by a power of c. Another choice that can lead to confusion is whether c is
included in the definition of the 4-velocity. A widely used convention is such
that a 4-velocity is dimensionless, so that u2 = uµuµ = 1. This corresponds
to uµ = [γ, γβ] with γ = (1 − β2)−1/2, and with β = v/c in ordinary units.

A more serious source of confusion arises from the choice of electromagnetic
units. The units on which the formulae in this book are based are SI units. An
alternative choice that is used widely is gaussian units. The different powers
of c that appear in electromagnetic formulae with these different choices of
units are simply avoided by the use of natural units. In SI units the quantities
µ0 and ε0 are related by µ0ε0 = 1/c2, which becomes µ0ε0 = 1 in natural
units. Formulae in SI units with c = 1 are rewritten in gaussian units with
c = 1, by making the replacements µ0 = 4π, ε0 = 1/4π.

Dimensional analysis

To restore h̄ and c in a formula written in natural units one needs to use
dimensional analysis. The dimensions of a quantity are written as powers of
mass, M, length, L, and time, T. Let the symbol � denote ‘has the dimension’.
One has h̄ � ML2T−1 and c � LT−1. Setting c = 1 implies that length and
time are measured in the same units. A simple physical interpretation is that if
time is measured in seconds, then lengths must be measured in light-seconds.
In natural units, mass has the same dimensions as inverse time. A physical
interpretation is that a mass, m, corresponds to a rest energy mc2 and to
a frequency mc2/h̄, so that with h̄ = c = 1 the mass is denoted by this
frequency.

In practice, to use a formula written in natural units, one needs to use
dimensional analysis to rewrite it in terms of ordinary units. This involves
multiplying a formula a power of h̄ and a power of c, and choosing these
powers such that the result has the desired dimensions. Consider, for exam-
ple, the formula W =

∫
[d3p/(2π)3](m2 + |p|2)1/2f(p), given the additional

information that W is an energy density, that p is a momentum, and that
the distribution function, f(p), is dimensionless. By assumption the dimen-
sions of the left hand side are W � (ML2T−2)L−3. By assumption, the term
|p|2 � (MLT−1)2has the dimensions of of a momentum squared, and the term
m2 must be multiplied by c2 so that it has the same dimensions. Then the
right hand side has the dimensions of momentum to the fourth power, that
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is (MLT−1)4. We must multiply by powers of h̄ and c so that these dimen-
sions are the same as those of the left hand side. On multiplying by h̄acb, one
requires (ML2T−2)L−3 = (MLT−1)4(ML2T−1)a(LT−1)b, implying a = −3,
b = 1. Thus dimensional analysis implies that when this formula rewritten in
ordinary units it becomes W =

∫
[d3p/(2πh̄)3](m2c4 + |p|2c2)1/2f(p).

Electromagnetic units

On including electromagnetic effects, one needs to add a further dimension,
and this is chosen to be the charge, Q. SI units and gaussian units lead to
different dimensions. Charge times electric field has the same dimensions in
both sets of units, qE � MLT−2. However, charge times magnetic field has
different dimensions, being qB � MT−1 in SI units and qB � MLT−2 in gaus-
sian units. Moreover, in SI units the square of the charge and the squares of
the electric and magnetic field require an additional quantity with dimensions,
either ε0 or 1/µ0 = ε0/c

2, to convert them into quantities that involve only
M, L, T, whereas in gaussian units the squares of either electromagnetic field
can be expressed in terms of M, L, T directly.

To avoid possible confusion with units, appropriate formulae are written
in terms of quantities whose dimensions are clear. In particular, the square of
the charge q can be combined with the number density, n, and mass, m, in
the plasma frequency, ωp, with

ω2
p =

q2n

ε0m
=
µ0q

2n

mc2
, (A.2.1)

in SI units, and with ε0 = 1/µ0c
2 = 1/4π in gaussian units, or in terms of the

classical radius, r0, of the particle:

r0 =
q2

4πε0mc2
=
µ0q

2

4πm
. (A.2.2)

The fine structure constant, αc, is the ratio of the classical radius of the
electron to the Compton wavelength h̄/mc:

αc =
e2

4πε0h̄c
=
µ0e

2c

4πh̄
≈ 1

137
. (A.2.3)
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absorption
3-wave interaction, 365
coefficient, 57
ion acoustic waves, 70
Landau damping, 70
Langmuir waves, 151
negative, 344
nonlinear, 227
polarization-dependent, 66

acoustic speed, 154
action integral, 85
affine parameter, 110
anisotropic distribution

1D Jüttner, 157
classes, 155
expansion in Pn(cos α), 155
relativistic streaming, 156
strictly-parallel, 156
strictly-perpendicular, 159

anticommutation relations, 255
appearance radiation, 185

Bhabha scattering, 318
Boltzmann equation, 99
Born approximation, 309
boson plasma, 422

spin 0, 422
spin 1, 424

bra, 234
bremsstrahlung

electron-ion collisions, 186
impulsive model, 187
Mott scattering, 310

soft photon, 311
straight-line approximation, 189

canonical momentum, 88
causal condition, 15

logarithmic form, 380
Cayley-Hamilton theorem, 44, 46
Cerenkov absorption, 177
Cerenkov condition, 173
Cerenkov emission

kinetic equations, 290
neutrino, 449
power radiated, 184, 291
probability, 172, 288
radiative correction, 368
spin dependence, 417
transition rate, 286
unpolarized electron, 289

charge-continuity condition, 18
chemical potential, 291, 293
chiral medium, 60
chronological operator, 260
classical radius of electron, 456
closed loop, 359
collision integral, 195

covariant form, 193
Mott scattering, 320
nonrelativistic particles, 197

commutation relations
basic, 235

commutator, 235
completeness relation, 245, 246
conductivity 4-tensor, 28
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conductivity tensor, 29
conserved quantities, 410
constants of the motion, 410
continuity equation

charge, 10
electromagnetic energy, 10
energy-momentum, 82
fluid, 93
wave energy, 57

contractions, 262
coordinate

representation, 237
correlation function, 100
Coulomb logarithm, 198
cross section

Bhabha, 318
bremsstrahlung

soft photons, 312
Compton, 305
differential, 187
Klein-Nishina, 306
Møller, 317
Mott, 309
Rutherford, 187
scattering, 296
Thomson, 208

crossed diagrams, 273
crossed processes

first-order, 288
crossing symmetry, 22

nonlinear response tensor, 22
cubic response

electron gas, 361
vacuum, 328

cutoff frequency
moving frame, 72
relativistic quantum plasma, 399
relativistic thermal, 148

cuts in closed loops, 337

Debye length
relativistic thermal, 148

Debye screening, 308
degenerate Bose gas, 425
density matrix approach, 334
detailed balance, 175
dielectric tensor, 25

nonrelativistic thermal plasma, 35
dimensional analysis, 455

dimensional restrictions, 330
Dirac δ-function, 13
Dirac adjoint, 240, 245
Dirac Hamiltonian, 239
Dirac matrices, 238, 239, 411

σµν , 241
γ5, 241
basis set, 241
explicit form, 240
spinor indices, 350
spinor representation, 238
standard representation, 239

Dirac wavefunction
plane wave, 244
second quantized, 260

Dirac’s equation, 238, 340
covariant form, 239, 246

dispersion equation
degenerate boson plasma, 426
invariant form, 46
longitudinal

relativistic thermal, 147
moving frame, 71
nonlinear, 226
transverse

relativistic thermal, 147
spin 0 gas, 427

weakly anisotropy, 64
weakly inhomogeneous medium, 109

dispersion relation
acoustic

relativistic thermal, 153
ion acoustic mode, 70
Langmuir

relativistic thermal, 150
longitudinal

relativistic thermal, 149
transverse

relativistic thermal, 152
vacuum, 37
weak anisotropy, 64

double emission, 204
dyadic, 34

eikonal, 104
Einstein coefficients, 175
electric 4-vector Eµ, 8
electric-moment operator, 412

eigenstates, 415
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electromagnetic mass, 434
electron-neutrino scattering, 441
electroweak theory

interaction term, 440
energy-momentum tensor

T µν
M (k), 105

Abraham form, 58
field, 81
Minkowski form, 58

equation of motion, 20
covariant form, 79
fluid, 93
Lagrangian form, 78

covariant, 79
Euler-Lagrange equation

classical field, 81
wave subsystem, 105

event, 3

Faraday effect, 66
generalized, 67

Fermi energy, 320
chemical potential, 321

Fermi momentum, 382
Fermi-Dirac distribution, 291, 321, 377

completely degenerate limit, 382
nondegenerate limit, 390

Feynman contour, 259
Feynman diagram

Bhabha scattering, 318
bubble, 324
Cerenkov emission, 286
Cerenkov emission by neutrino, 449
Compton scattering, 300
connected, 270
cuts, 337
disjoint, 270
electron self energy, 331
elements, 270
first order, 271
Møller scattering, 314
Mott scattering, 308
nonlinear scattering, 300
one-photon pair creation, 292
rules, 280
seagull, 284
semiclassical, 173
vacuum polarization, 324
vertex, 270

Feynman parametrization, 312, 327
Feynman propagator, 259
Feynman rules

m-photon vertex, 282
coordinate space, 281
electroweak theory, 284
momentum space, 282
SED, 284
vertex formalism, 283
weak interactions, 284

Fierz transformation, 441
first-order processes, 286
fluctuations, 192

quantum plasma, 353
Fokker-Planck equation, 181

covariant, 181
forward-scattering approach, 83

nonlinear response tensors, 162
four wave mixing, 226
Fourier transform, 12

4-dimensional, 12
convolution theorem, 13
power theorem, 12
reality condition, 12
truncation, 13

Friedel oscillations, 396

gauge
Coulomb, 11, 19, 42, 60
gauge condition, 11, 18
gauge transformation, 10
Lorenz, 11, 19, 60
radiation, 11, 60
temporal, 11, 19, 60, 61

gauge transformation
photon propagator, 39

gauge-invariance condition, 18
Gaunt factor, 188, 190
Gram determinant, 330
Green’s function, 39

thermal, 334, 336, 337
group velocity, 57

Hamiltonian
Dirac, 239
interaction, 236, 252
interaction in QED, 265
particle in EM field, 251
relativistic particle, 237
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second order, 284
simple harmonic oscillator, 253
wave, 108
wave subsystem, 58

Hamiltonian operator, 236
Heisenberg

matrix mechanics, 235
picture, 236

Heisenberg-Euler Lagrangian, 330
helicity operator, 411, 412

eigenfunctions, 247
eigenstates, 416, 418
spin σ, 413

helicity-dependent electron gas, 421
Hilbert space, 234

representations, 236
Hilbert transform, 15

induced Compton scattering, 207, 215
inhomogeneous wave equation, 170
instability

kinetic, 366
neutrino driven, 446
neutrino-beam driven, 451
photon-beam driven, 365
reactive, 366

interaction Hamiltonian
four-wave, 268
QED, 266
SED, 269
three-wave, 268

interaction picture, 264
invariants, 2

electromagnetic field, 9
Maxwell tensor, 9

inverse Compton scattering, 207, 214
ion acoustic waves, 70

Jüttner distribution, 123, 390
one dimensional, 157

Jancovici’s response tensor, 402

ket, 234
kinetic equation

Cerenkov emission, 290
Compton scattering, 302
double scattering, 204
fluctuations, 193
isotropic distributions, 212

one-photon pair creation, 292
scattering by particles, 202
three-wave coalescence, 222
three-wave processes, 219
wave-wave scattering, 223

Klein-Gordon equation, 237
Klein-Nishina cross section, 306
Kohn singularity, 397
Kompaneets equation, 212
Kramers-Kronig relations, 20

special relativistic form, 20
Kubo’s formula, 355

Lagrangian
k-space, 86
covariant, 78
Dirac field, 248, 249
electromagnetic field, 82
interaction electroweak, 440
interaction QED, 252, 265
interaction SED, 422
Klein-Gordon, 248, 252
nonlinear, 87
oscillating-center expansion, 85
particle system, 80
second order, 86
single particle, 78, 89
wave subsystem, 58, 104

Lagrangian density, 78
Landau damping, 70

absent for ω > |k|, 152
absorption coefficient, 177
nonlinear correction, 368

Landau diamagnetism, 33, 398
Langmuir collapse, 226, 232
Langmuir waves, 70

cutoff frequency, 148
degenerate electron gas, 402
moving frame, 71
photon-beam driven, 366
relativistic thermal plasma, 150
strictly parallel plasma, 158

light line, 150
Lindhard’s response tensor, 388, 402
longitudinal 4-tensor, 31, 372
loop momentum, 275
Lorentz factor, 4
Lorentz transformation, 4

boost, 4
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improper, 5
proper, 5

Møller scattering, 314
MacDonald functions Kin(ρ), 125

integral representation, 190
MacDonald functions Kν(x)

differential equation, 124
half-integer ν, 161
integral representation, 131
recursion relations, 124

macrosocpic mass renormalization
(MMR), 340

magnetic 4-vector Bµ, 8
magnetic susceptibility, 398
magnetic-moment operator, 412

eigenstates, 414
eigenvalues, 417
spin s, 413

Mandelstam diagram, 296
manifestly covariant form, 6
Maxwell tensor, 7

dual, 7, 8
Maxwell’s equations, 7

covariant form, 7
for Eµ, Bµ, 9
for D, H , 24
vector form, 7

metric tensor, 2
minimal coupling assumption, 250, 251
MMR

classical, 433
effective mass, 431
electromagnetic mass, 434
gauge dependence, 437
isotropic medium, 430
mass operator

four contribution, 431
ponderomotive force, 438
quark-gluon plasma, 437
quasi-particle, 437

Mott cross section, 309
Mott scattering, 308
multiple-photon vertex, 273

natural units, 1
neutrino

response 4-tensor, 447
Cerenkov emission, 449

dispersion relation, 409, 444

effective mass, 445

flavor, 439, 446

induced charge, 449

mixing, 445

neutrino-beam instability, 451

neutrino-photon vertex, 448

plasma emission, 408

refractive index, 445

self energy, 445

spin, 247

neutrino gas, 446

nonlinear response 4-tensor

nth order, 359

causal condition, 23

charge-continuity condition, 23

crossing symmetry, 22

cubic, 18, 95, 162, 163, 361

electrostatic, 166

one slow, 165

two slow, 166

effective cubic, 221

forward-scattering, 162

gauge-invariance condition, 23

quadratic, 18, 95, 162, 163, 205, 268,
360

electrostatic, 166

one slow, 164

reality condition, 22

relativistic quantum, 339, 359

Vlasov, 162

nonlinear scattering, 205

normal order, 257

occupation number

electrons and positrons, 250

particles, 249

spin-dependent, 336

wave action, 56

wave quanta, 335

one-photon pair creation, 286, 292

suppression by electrons, 344

Onsager relations, 21

covariant form, 23

optical activity, 32, 60, 421

orthogonal polarizations, 65

orthogonality relation, 32, 243, 246
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pair creation
threshold, 428

Pauli exclusion principle, 255, 344
Pauli matrices, 67, 238, 240, 411
Pauli spin paramagnetism, 33, 398
permeability tensor, 25
permittivity tensor, 25
phase-coherent interactions, 223
phenomenological electrodynamics, 24
photon propagator, 37, 39

antihermitian part, 263
as a vacuum expectation value, 263
bare, 325
gauge transformation, 39
in vacuo, 42
statistical average, 337, 367
statistically averaged, 335

picture, 235
Heisenberg, 236, 356
interaction, 236, 264
Schrödinger, 236, 237

plasma dispersion function
nonrelativistic, 36
relativistic (RPDF), 127
relativistic quantum (RQPDF), 376

plasma frequency, 34
proper, 120

Plemelj formula, 15, 19
Poincaré group, 4
Poincaré sphere, 66
Poisson bracket, 235
polarization 4-vector, 50
ponderomotive force, 88, 438

3-force densities, 89
4-force, 88

probability of emission, 172
propagator

boson, 262
bosons of spin 1, 258
bosons spin 0, 258
thermal, 334

proper plasma frequency, 120
cutoff frequency, 148

quantum field theory, 233
quantum plasma effects, 400
quantum recoil, 174, 178, 345

absorption, 344
spontaneous emission, 180
spontaneous scattering, 213

quark-gluon plasma, 437
quasilinear equations, 175

Fokker-Planck approach, 181
particles, 177

radiation field, 170
radiation reaction force, 179
ratio of electric to total energy, 51
ray equations

covariant, 108
curved space-time, 111
Hamiltonian form, 108

regularization, 324, 326
renomalization, 324
representation

coordinate, 237
Hilbert space, 236
matrix, 239
momentum space, 277
spinor, 238
standard, 239, 240

resonance condition
boundaries, 378
relativistic quantum, 345

LD, 347
PC, 347

response 3-tensor
cold plasma, 34
dielectric tensor, 25
electric susceptibility, 25
magnetic susceptibility, 25
magneto-electric susceptibility, 25
permeability tensor, 25
permittivity tensor, 25

response 4-tensor
Π5

µν(k), 447, 450
1D Jüttner distribution, 158, 159
4-magnetization, 25
antihermitian part ΠAµν(k), 19
charge-continuity condition, 18
cold plasma, 34, 95
cold streaming plasma, 35
forward-scattering, 83, 118
gauge-invariance condition, 18
helicity-dependent part, 421
hermitian part ΠHµν(k), 19
isotropic dielectric, 35
isotropic plasma, 36, 120
isotropic quantum plasma, 372
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linear Πµν(k), 17
neutrino gas, 446, 447, 450
nonlinear correction, 226
Onsager relations, 21
photon gas, 363, 366
polarized electrons, 409
reality condition, 18
relativistic quantum, 341–343
rotatory part, 120, 421
Silin’s method, 130
spin-dependent, 418, 420, 421
spin 0 particles, 422
spin 1 particles, 424
streaming distribution, 156
strictly-parallel distribution, 157
strictly-perpendicular Jüttner, 160
Trubnikov’s method, 132
Vlasov, 84, 118

response function
longitudinal, 30, 372
rotatory, 30
transverse, 30, 372

rotatory 4-tensor, 31, 32
RPDF T (z, ρ), 127

definitions, 135
differential equations, 135
expansions, 138
nonrelativistic, 143
properties, 138
ultrarelativistic, 144
weakly relativistic, 143

RPDFs
longitudinal function, 140
Silin’s method, 130
Trubnikov functions, 144

RQPDFs
imaginary parts, 379
nondegenerate thermal, 393

Rutherford cross section, 187, 198

scalar electrodynamics (SED), 422
scattering

electron-electron, 314
relativistic degenerate plasma, 320

electron-positron, 314
Mott, 308

scattering cross section, 296
scattering matrix

S-matrix, 264

evolution, 265
unitarity, 338

Schrödinger
representation, 237

Schrödinger equation, 237
time dependent, 236, 237

Schrödinger-Pauli theory, 251
seagull diagram, 284
second-order processes, 274
self-consistent field, 193
semiclassical formalism, 55, 105
spin flip, 418
spin operator

σµν , 241, 410
σ̃µν , 411
electric-moment, 411, 412
helicity, 246, 411, 412
helicity 4-vector, 247
magnetic-moment, 411, 412
preferred, 412

spin-dependent electron gas, 416
spinless particles, 269, 422
spontaneous emission, 170
standard model, 439
Stokes parameters, 67
Stokes phenomenon, 140
Stokes vector, 67
summation convention, 2
superdense plasma

pair creation, 407
supernova, 446
susceptibility, 33

magnetic, 398
susceptibility tensor, 24

tensor notation
4-gradient, 4
4-vector, 3
contraction, 3
contravariant components, 2
covariant components, 2
dyadic notation, 34
matrix convention, 5
signature, 2

Thomson cross section, 208
Thomson scattering, 205

highly relativistic electrons, 207
in vacuo, 207

time reversal, 20
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transfer equation for waves, 175
transition radiation, 186
transverse 4-tensor, 31, 372
transverse waves

relativistic thermal, 152
Trubnikov function, 133, 135, 141

generalized, 144
Trubnikov’s integral, 130
turbulent bremsstrahlung, 368

undressed particles, 193
unitarity, 338
units, 454

electromagnetic, 456
gaussian, 453
natural, 1
SI, 453

vacuum polarization tensor, 419
vacuum response

cubic, 324, 328
higher order, 331

vacuum response 4-tensor, 326
vertex

m-photon, 273
correction, 332
formalism, 287

Cerenkov emission, 286
Møller scattering, 314
spin dependence, 419

general properties, 417
neutrino-photon, 448

vertex formalism, 276
virtual waves, 206
Vlasov approach, 83

covariant, 97

nonlinear response tensors, 162
Vlasov equation

covariant, 83

Ward identity, 332
wave action, 55

occupation number, 56
wave amplitude, 54
wave equation, 38
wave Lagrangian, 104
wave modes

absorption coefficient, 57
degenerate transverse, 42, 61
energy-momentum tensor, 58
forward and backward modes, 49
ion acoustic, 70
Langmuir, 70
Langmuir-like mode, 427
pair modes, 428
polarization vector, 50
ratio RM (k), 51
roton-like modes, 428, 429

weak interactions
electroweak theory, 439

Wick’s theorem, 262
Wigner function, 351

autocorrelation function, 354
Fourier transform, 352
occupation number, 351
one-dimensional, 349

Wigner matrix, 350
first order, 352
fluctuations, 354

Zakharov equations, 230
zero sound, 402
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